Skip to main content
Log in

Optimization of a dispersive liquid–liquid microextraction method for the analysis of benzotriazoles and benzothiazoles in water samples

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A simple and rapid dispersive liquid–liquid microextraction method has been developed for the determination of 11 benzotriazoles and benzothiazoles in water samples. Tri-n-butylphosphate (TBP) was used as extractant, thus avoiding the use of toxic water-immiscible chlorinated solvents. The influence of several variables (e.g., type and volume of dispersant and extraction solvents, sample pH, ionic strength, etc.) on the performance of the sample preparation step was systematically evaluated. Analytical determinations were carried out by high-performance liquid chromatography with fluorescence and UV detection and liquid chromatography–electrospray ionization-tandem mass spectrometry. The optimized method exhibited a good precision level with relative standard deviation values between 3.7% and 8.4%. Extraction yields ranging from 67% to 97% were obtained for all of these considered compounds. Finally, the proposed method was successfully applied to the analysis of benzotriazoles and benzothiazoles in real water samples (tap, river, industrial waters, and treated and raw wastewaters).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Richardson SD (2010) Anal Chem 82:4742–4774

    Article  CAS  Google Scholar 

  2. Gruden CL, Dow SM, Hernandez MT (2001) Water Environ Res 73:72–79

    Article  CAS  Google Scholar 

  3. Kiss A, Fries E (2009) Environ Sci Pollut Res 16:702–710

    Article  CAS  Google Scholar 

  4. Reemtsma T, Miehe U, Duennbier U, Jekel M (2010) Water Res 44:596–604

    Article  CAS  Google Scholar 

  5. Kloepfer A, Jekel M, Reemtsma T (2004) J Chromatogr A 1058:81–88

    CAS  Google Scholar 

  6. De Weber H, Verachtert H (1997) Water Res 31:2673–2684

    Article  Google Scholar 

  7. Kloepfer A, Jekel M, Reemtsma T (2005) Environ Sci Technol 39:3792–3798

    Article  CAS  Google Scholar 

  8. Ni HG, Lu FH, Luo XL, Tian HY, Zeng EY (2008) Environ Sci Technol 42:1892–1897

    Article  CAS  Google Scholar 

  9. Van Leerdam JA, Hogenboom AC, van der Kooi E, de Voogt P (2009) Intern J Mass Spectrom 282:99–107

    Article  Google Scholar 

  10. Pillard DA, Cornell JS, Dufresne DL, Hernandez MT (2001) Water Res 35:557–560

    Article  CAS  Google Scholar 

  11. Jover E, Matamoros V, Bayona JM (2009) J Chromatogr A 1216:4013–4019

    Article  CAS  Google Scholar 

  12. Loos R, Gawlik BM, Locoro G, Rimaviciute E, Contini S, Bidoglio G (2009) Environ Pollut 157:561–568

    Article  CAS  Google Scholar 

  13. Giger W, Schaffner C, Kohler HPE (2006) Environ Sci Technol 40:7186–7192

    Article  CAS  Google Scholar 

  14. Loos R, Locoro G, Comero S, Contini S, Schwesig D, Werres F, Balsaa P, Gans O, Weiss S, Blaha L, Bolchi M, Gawlik BM (2010) Water Res 44:4115–4126

    Article  CAS  Google Scholar 

  15. Cancilla DA, Baird JC, Rosa R (2003) Bull Environ Contam Toxicol 70:868–875

    Article  CAS  Google Scholar 

  16. Weiss S, Reemtsma T (2005) Anal Chem 77:7415–7420

    Article  CAS  Google Scholar 

  17. Matamoros V, Jover E, Bayona JM (2010) Wat Sci Technol 61:191–198

    Article  CAS  Google Scholar 

  18. Rezaee M, Assadi Y, Hosseini MRM, Aghaee E, Ahmadi F, Berijani S (2006) J Chromatogr A 1116:1–9

    Article  CAS  Google Scholar 

  19. Rezaee M, Yamini Y, Faraji M (2010) J Chromatogr A 1217:2342–2357

    Article  CAS  Google Scholar 

  20. Anthemidis AN, Ioannou KIG (2009) Talanta 80:413–421

    Article  CAS  Google Scholar 

  21. Pena MT, Casais MC, Mejuto MC, Cela R (2009) J Chromatogr A 1216:6356–6364

    Article  CAS  Google Scholar 

  22. Rezaei F, Bidari A, Birjandi AP, Hosseini M, Assadi Y (2008) J Hazard Mater 158:621–627

    Article  CAS  Google Scholar 

  23. Leong MI, Huang SD (2008) J Chromatogr A 1211:8–12

    Article  CAS  Google Scholar 

  24. Saleh A, Yamini Y, Faraji M, Rezaee M, Ghambarian M (2009) J Chromatogr A 1216:6673–6679

    Article  CAS  Google Scholar 

  25. Hu XZ, Wu JH, Feng YQ (2010) J Chromatogr A 1217:7010–7016

    Article  CAS  Google Scholar 

  26. Fattahi N, Assai Y, Hosseini MRM, Jahromi EZ (2007) J Chromatogr A 1157:23–29

    Article  CAS  Google Scholar 

  27. Rezaee M, Yamini Y, Khanchi A, Faraji M, Saleh A (2010) J Hazard Mat 178:766–770

    Article  CAS  Google Scholar 

  28. Cela R, Lores M (1996) Computers Chem 20:175–191

    Article  CAS  Google Scholar 

  29. García-Lavandeira J, Losada B, Martínez-Pontevedra JA, Lores M, Cela R (2008) J Chromatogr A 1208:116–125

    Article  Google Scholar 

  30. Hogenboom AC, van Leerdam JA, de Voogt P (2009) J Chromatogr A 1216:510–519

    Article  CAS  Google Scholar 

  31. García-Lavandeira J, Martínez-Pontevedra JA, Lores M, Cela R (2006) J Chromatogr A 1128:17–26

    Article  Google Scholar 

  32. Mathieu D, Nony J, Phan-Tan-Luu R (2000) Nemrod® W, ver. 2000. LPRAI, Marseille

    Google Scholar 

  33. Reemtsma T (2000) Rapid Commun Mass Spectrom 14:1612–1618

    Article  CAS  Google Scholar 

  34. Urbansky ET, Freeman DM, Rubio FJ (2000) J Environ Monit 2:253–256

    Article  CAS  Google Scholar 

  35. Fiehn O, Reemtsma T, Jekel M (1994) Anal Chim Acta 295:297–305

    Article  CAS  Google Scholar 

  36. Fries E (2011) Anal Chim Acta 689:65–68

    Article  CAS  Google Scholar 

  37. Céspedes R, Lacorte S, Ginebreda A, Barceló D (2006) Anal Bioanal Chem 385:992–1000

    Article  Google Scholar 

  38. Voutsa D, Hartmann P, Schaffner C, Walter G (2006) Environ Sci Pollut Res 13:333–341

    Article  CAS  Google Scholar 

  39. Weiss T, Jakobs J, Reemtsma T (2006) Environ Sci Technol 40:7193–7199

    Article  CAS  Google Scholar 

  40. Reemtsma T, Fiehn O, Kalnowski G, Jekel M (1995) Environ Sci Technol 29:478–485

    Article  CAS  Google Scholar 

  41. Liu Y-S, Ying G-G, Shareef A, Kookana RS (2011) J Chromatogr A 1218:5328–5335

    Article  CAS  Google Scholar 

  42. Breedveld GD, Roseth R, Sparrevik M, Hartnik T, Hem LJ (2003) Water Air Soil Pollut 3:91–101

    CAS  Google Scholar 

  43. Matamoros V, Jover E, Bayona JM (2010) Anal Chem 82:669–706

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Spanish Ministry of Education and Science (project CTQ2009-08377), E.U. FEDER funding and the Xunta de Galicia (project PGIDIT08MDS008CT). T. Pena gratefully acknowledges her FPI contract from the Spanish Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Cela.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 615 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pena, M.T., Vecino-Bello, X., Casais, M.C. et al. Optimization of a dispersive liquid–liquid microextraction method for the analysis of benzotriazoles and benzothiazoles in water samples. Anal Bioanal Chem 402, 1679–1695 (2012). https://doi.org/10.1007/s00216-011-5598-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5598-7

Keywords

Navigation