Analytical and Bioanalytical Chemistry

, Volume 402, Issue 10, pp 3127–3146 | Cite as

Pathogen detection using engineered bacteriophages

  • Abby E. Smartt
  • Tingting Xu
  • Patricia Jegier
  • Jessica J. Carswell
  • Samuel A. Blount
  • Gary S. Sayler
  • Steven Ripp


Bacteriophages, or phages, are bacterial viruses that can infect a broad or narrow range of host organisms. Knowing the host range of a phage allows it to be exploited in targeting various pathogens. Applying phages for the identification of microorganisms related to food and waterborne pathogens and pathogens of clinical significance to humans and animals has a long history, and there has to some extent been a recent revival in these applications as phages have become more extensively integrated into novel detection, identification, and monitoring technologies. Biotechnological and genetic engineering strategies applied to phages are responsible for some of these new methods, but even natural unmodified phages are widely applicable when paired with appropriate innovative detector platforms. This review highlights the use of phages as pathogen detector interfaces to provide the reader with an up-to-date inventory of phage-based biodetection strategies.


Bacteriophage Bioreporter Biosensor Pathogen Phage 



Portions of this review reflecting work by the authors were supported by the US Department of Agriculture Biotechnology Risk Assessment Program, the Armed Forces Medical Intelligence Command, the NASA Advanced Human Support Technology Program, the Army Defense University Research Instrumentation Program, and the Office of Naval Research.


  1. 1.
    Smartt AE, Ripp S (2011) Anal Bioanal Chem 400(4):991–1007CrossRefGoogle Scholar
  2. 2.
    Mandeville R, Griffiths M, Goodridge L, McIntyre L, Ilenchuk TT (2003) Anal Lett 36(15):3241–3259CrossRefGoogle Scholar
  3. 3.
    Schmelcher M, Loessner MJ (2008) In: Zourob M, Elwary S, Turner A (eds) Principles of bacterial detection: biosensors, recognition receptors and microsystems. Springer, New York, pp 731–754CrossRefGoogle Scholar
  4. 4.
    Hennes KP, Suttle CA (1995) Limnol Oceanogr 40(6):1050–1055CrossRefGoogle Scholar
  5. 5.
    Johnson I, Spence MTZ (2010) Molecular probes handbook: a guide to fluorescent probes and labeling technologies. Invitrogen Life Technologies, CarlsbadGoogle Scholar
  6. 6.
    Goodridge L, Chen J, Griffiths MW (1999) Int J Food Microbiol 47:43–50CrossRefGoogle Scholar
  7. 7.
    Goodridge L, Chen J, Griffiths MW (1999) Appl Environ Microbiol 65(4):1397–1404Google Scholar
  8. 8.
    Kenzaka T, Utrarachkij F, Suthienkul O, Nasu M (2006) J Health Sci 52(6):666–671CrossRefGoogle Scholar
  9. 9.
    Mosier-Boss PA, Lieberman SH, Andrews JM, Rohwer FL, Wegley LE, Breitbart M (2003) Appl Spectrosc 57(9):1138–1144CrossRefGoogle Scholar
  10. 10.
    Kretzer JW, Lehmann R, Schmelcher M, Banz M, Kim KP, Korn C, Loessner MJ (2007) Appl Environ Microbiol 73(6):1992–2000CrossRefGoogle Scholar
  11. 11.
    Callewaert L, Walmagh M, Michiels CW, Lavigne R (2011) Curr Opin Biotechnol 22(2):164–171CrossRefGoogle Scholar
  12. 12.
    Singh A, Arya SK, Glass N, Hanifi-Moghaddam P, Naidoo R, Szymanski CM, Tanha J, Evoy S (2010) Biosens Bioelectron 26(1):131–138CrossRefGoogle Scholar
  13. 13.
    Robertson KL, Soto CM, Archer MJ, Odoemene O, Liu JL (2011) Bioconjug Chem 22(4):595–604CrossRefGoogle Scholar
  14. 14.
    Awais R, Fukudomi H, Miyanaga K, Unno H, Tanji Y (2006) Biotechnol Prog 22(3):853–859CrossRefGoogle Scholar
  15. 15.
    Funatsu T, Taniyama T, Tajima T, Tadakuma H, Namiki H (2002) Microbiol Immunol 46(6):365–369Google Scholar
  16. 16.
    Tanji Y, Furukawa C, Na SH, Hijikata T, Miyanaga K, Unno H (2004) J Biotechnol 114(1–2):11–20CrossRefGoogle Scholar
  17. 17.
    Namura M, Hijikata T, Miyanaga K, Tanji Y (2008) Biotechnol Prog 24:481–486CrossRefGoogle Scholar
  18. 18.
    Oda M, Morita M, Unno H, Tanji Y (2004) Appl Environ Microbiol 70(1):527–534CrossRefGoogle Scholar
  19. 19.
    Piuri M, Jacobs WR, Hatfull GF (2009) PLoS One 4(3):e4870. doi: 10.1371/journal.pone.0004870 CrossRefGoogle Scholar
  20. 20.
    Shaner NC, Steinbach PA, Tsien RY (2005) Nat Methods 2(12):905–909CrossRefGoogle Scholar
  21. 21.
    Liang J, Luo YZ, Zhao HM (2011) Wiley Interdiscip Rev Syst Biol 3(1):7–20CrossRefGoogle Scholar
  22. 22.
    Waddell TE, Poppe C (2000) FEMS Microbiol Lett 182:285–289CrossRefGoogle Scholar
  23. 23.
    Thouand G, Vachon P, Liu S, Dayre M, Griffiths MW (2008) J Food Prot 71(2):380–385Google Scholar
  24. 24.
    Loessner MJ, Rudolf M, Scherer S (1997) Appl Environ Microbiol 63(8):2961–2965Google Scholar
  25. 25.
    Schofield DA, Molineux IJ, Westwater C (2009) J Clin Microbiol 47(12):3887–3894CrossRefGoogle Scholar
  26. 26.
    Schofield DA, Westwater C (2009) J Appl Microbiol 107(5):1468–1478CrossRefGoogle Scholar
  27. 27.
    Jacobs WR, Barletta RG, Udani R, Chan J, Kalkut G, Sosne G, Kieser T, Sarkis GJ, Hatfull GF, Bloom BR (1993) Science 260(5109):819–822CrossRefGoogle Scholar
  28. 28.
    Wolber PK, Green RL (1990) Trends Biotechnol 8:276–279CrossRefGoogle Scholar
  29. 29.
    Edgar R, McKinstry M, Hwang J, Oppenheim AB, Fekete RA, Giulian G, Merril C, Nagashima K, Adhya S (2006) Proc Natl Acad Sci USA 103(13):4841–4845CrossRefGoogle Scholar
  30. 30.
    Wu LN, Huang TT, Yang LL, Pan JB, Zhu SB, Yan XM (2011) Angew Chem Int Ed 50(26):5873–5877CrossRefGoogle Scholar
  31. 31.
    Petrenko VA, Vodyanoy VJ (2003) J Microbiol Methods 53(2):253–262CrossRefGoogle Scholar
  32. 32.
    Guo YC, Liang XS, Zhou YF, Zhang ZP, Wei HP, Men D, Luo M, Zhang XE (2010) Anal Biochem 396(1):155–157CrossRefGoogle Scholar
  33. 33.
    Glosnicka R, Dera-Tomaszewska B (1999) Eur J Epidemiol 15(4):395–401CrossRefGoogle Scholar
  34. 34.
    Marples RR, Rosdahl VT, Pessat OAN, Vickery A, Godard C, Mamizuka EM, Toshkova K, Johnson WM, Zhu C, Petras P, Cookson BD, VuopioVarkila J, ElSolh N, Schaal KP, Mak WP, Milch H, Mathur MD, Samra Z, Iyobe S, Cho DT, Udo EE, Hanifah YA, van Leeuwen WJ, Heffernan H, Galinski J, Cristino J, Negut M, Dmitrenko O, Osoba AO, Klugman KP, Vindel A, Sunthadvanich R (1997) J Med Microbiol 46(6):511–516CrossRefGoogle Scholar
  35. 35.
    Hirsh DC, Martin LD (1983) Appl Environ Microbiol 45(1):260–264Google Scholar
  36. 36.
    Hirsh DC, Martin LD (1983) Appl Environ Microbiol 46(5):1243–1245Google Scholar
  37. 37.
    Mole RJ, Maskell WOC (2001) J Chem Technol Biotechnol 76:683–688CrossRefGoogle Scholar
  38. 38.
    Hance KR, Smith BC, Steinmark TD, Rees JC (2005) Am J Clin Pathol 124(4):644–645Google Scholar
  39. 39.
    Favrin SJ, Jassim SA, Griffiths MW (2001) Appl Environ Microbiol 67(1):217–224CrossRefGoogle Scholar
  40. 40.
    Favrin SJ, Jassim SA, Griffiths MW (2003) Int J Food Microbiol 85(1–2):63–71CrossRefGoogle Scholar
  41. 41.
    Jassim SAA, Griffiths MW (2007) Lett Appl Microbiol 44(6):673–678CrossRefGoogle Scholar
  42. 42.
    Sergueev KV, He YX, Borschel RH, Nikolich MP, Filippov AA (2010) PLoS One 5(6):e11337. doi: 10.1371/journal.pone.0011337 CrossRefGoogle Scholar
  43. 43.
    Pierce CL, Rees JC, Fernandez FM, Barr JR (2011) Anal Chem 83(6):2286–2293CrossRefGoogle Scholar
  44. 44.
    Madonna AJ, Van Cuyk S, Voorhees KJ (2003) Rapid Commun Mass Spectrom 17(3):257–263CrossRefGoogle Scholar
  45. 45.
    Guan JW, Chan M, Allain B, Mandeville R, Brooks BW (2006) J Food Prot 69(4):739–742Google Scholar
  46. 46.
    Kannan P, Yong HY, Reiman L, Cleaver C, Patel P, Bhagwat AA (2010) Foodborne Pathog Dis 7(12):1551–1558CrossRefGoogle Scholar
  47. 47.
    Blasco R, Murphy MJ, Sanders MF, Squirrell DJ (1998) J Appl Microbiol 84(4):661–666CrossRefGoogle Scholar
  48. 48.
    Neufeld T, Schwartz-Mittelmann A, Biran D, Ron EZ, Rishpon J (2003) Anal Chem 75(3):580–585CrossRefGoogle Scholar
  49. 49.
    Yemini M, Levi Y, Yagil E, Rishpon J (2007) Bioelectrochemistry 70(1):180–184CrossRefGoogle Scholar
  50. 50.
    Chang TC, Ding HC, Chen SW (2002) J Food Prot 65(1):12–17Google Scholar
  51. 51.
    Smietana M, Bock WJ, Mikulic P, Ng A, Chinnappan R, Zourob M (2011) Opt Express 19(9):7971–7978CrossRefGoogle Scholar
  52. 52.
    Hyman P, Abedon ST (2010) Adv Appl Microbiol 70:217–248CrossRefGoogle Scholar
  53. 53.
    Dwivedi HP, Jaykus LA (2011) Crit Rev Microbiol 37(1):40–63CrossRefGoogle Scholar
  54. 54.
    Herzog AB, Bhaduri P, Stedtfeld RD, Seyrig G, Ahmad F, Dave PK, Hashsham SA (2010) Water Environ Res 82(10):883–907CrossRefGoogle Scholar
  55. 55.
    Caliendo AM (2011) Clin Infect Dis 52:S326–S330CrossRefGoogle Scholar
  56. 56.
    Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011) Emerg Infect Dis 17(1):7–15CrossRefGoogle Scholar
  57. 57.
    Ferens WA, Hovde CJ (2011) Foodborne Pathog Dis 8(4):465–487CrossRefGoogle Scholar
  58. 58.
    LeBlanc JJ (2003) Crit Rev Microbiol 29(4):277–296Google Scholar
  59. 59.
    Deisingh AK, Thompson M (2004) J Appl Microbiol 96(3):419–429CrossRefGoogle Scholar
  60. 60.
    Willford J, Goodridge LD (2008) Food Prot Trends 28(7):468–472Google Scholar
  61. 61.
    Ulitzur S, Kuhn J (1987) In: Scholmerich J, Andreesen R, Kapp A, Ernst M, Woods WG (eds) Bioluminescence and chemiluminescence: new perspectives. Wiley, New York, pp 463–472Google Scholar
  62. 62.
    Kodikara CP, Crew HH, Stewart GSAB (1991) FEMS Microbiol Lett 83:261–266CrossRefGoogle Scholar
  63. 63.
    Ripp S, Jegier P, Johnson CM, Brigati J, Sayler GS (2008) Anal Bioanal Chem 391(2):507–514CrossRefGoogle Scholar
  64. 64.
    Brigati JR, Ripp S, Johnson CM, Jegier P, Sayler GS (2007) J Food Prot 70(6):1386–1392Google Scholar
  65. 65.
    Ripp S, Jegier P, Birmele M, Johnson C, Daumer K, Garland J, Sayler G (2006) J Appl Microbiol 100(3):488–499CrossRefGoogle Scholar
  66. 66.
    McLauchlin J, Mitchell RT, Smerdon WJ, Jewell K (2004) Int J Food Microbiol 92(1):15–33CrossRefGoogle Scholar
  67. 67.
    Postollec F, Falentin H, Pavan S, Combrisson J, Sohier D (2011) Food Microbiol 28(5):848–861CrossRefGoogle Scholar
  68. 68.
    Walcher G, Stessl B, Wagner M, Eichenseher F, Loessner MJ, Hein I (2010) Foodborne Pathog Dis 7(9):1019–1024CrossRefGoogle Scholar
  69. 69.
    Tietjen M, Fung DYC (1995) Crit Rev Microbiol 21(1):53–83CrossRefGoogle Scholar
  70. 70.
    Chen J, Griffiths MW (1996) J Food Prot 59:908–914Google Scholar
  71. 71.
    de Siqueira RS, Dodd CER, Rees CED (2003) Braz J Microbiol 34:118–120CrossRefGoogle Scholar
  72. 72.
    Lakshmanan RS, Guntupalli R, Hu J, Petrenko VA, Barbaree JM, Chin BA (2007) Sens Actuators B Chem 126(2):544–550CrossRefGoogle Scholar
  73. 73.
    Li SQ, Li YG, Chen HQ, Horikawa S, Shen W, Simonian A, Chin BA (2010) Biosens Bioelectron 26(4):1313–1319CrossRefGoogle Scholar
  74. 74.
    Over K, Crandall PG, O'Bryan CA, Ricke SC (2011) Crit Rev Microbiol 37(2):141–156CrossRefGoogle Scholar
  75. 75.
    Slana I, Paolicchi F, Janstova B, Navratilova P, Pavlik I (2008) Vet Med 53(6):283–306Google Scholar
  76. 76.
    Stanley EC, Mole RJ, Smith RJ, Glenn SM, Barer MR, McGowan M, Rees CED (2007) Appl Environ Microbiol 73(6):1851–1857CrossRefGoogle Scholar
  77. 77.
    Foddai A, Elliott CT, Grant IR (2009) Appl Environ Microbiol 75(12):3896–3902CrossRefGoogle Scholar
  78. 78.
    Foddai A, Strain S, Whitlock RH, Elliott CT, Grant IR (2011) J Clin Microbiol 49(5):2017–2019CrossRefGoogle Scholar
  79. 79.
    Miyanaga K, Hijikata TF, Furukawa C, Unno H, Tanji Y (2006) Biochem Eng J 29(1–2):119–124CrossRefGoogle Scholar
  80. 80.
    Laczka O, Garcia-Aljaro C, del Campo FJ, Pascual FXM, Mas-Gordi J, Baldrich E (2010) Anal Chim Acta 677(2):156–161CrossRefGoogle Scholar
  81. 81.
    Mejri MB, Baccar H, Baldrich E, Del Campo FJ, Helali S, Ktari T, Simonian A, Aouni M, Abdelghani A (2010) Biosens Bioelectron 26(4):1261–1267CrossRefGoogle Scholar
  82. 82.
    Lee SH, Onuki M, Satoh H, Mino T (2006) Lett Appl Microbiol 42(3):259–264CrossRefGoogle Scholar
  83. 83.
    Wan JH, Johnson ML, Guntupalli R, Petrenko VA, Chin BA (2007) Sens Actuators B Chem 127(2):559–566CrossRefGoogle Scholar
  84. 84.
    Huang S, Yang H, Lakshmanan RS, Johnson ML, Wan J, Chen IH, Wikle HC, Petrenko VA, Barbaree JM, Chin BA (2009) Biosens Bioelectron 24(6):1730–1736CrossRefGoogle Scholar
  85. 85.
    Fu LL, Li SQ, Zhang KW, Chen IH, Barbaree JM, Zhang AX, Cheng ZY (2011) IEEE Sens J 11(8):1684–1691CrossRefGoogle Scholar
  86. 86.
    Callow BR (1922) J Infect Dis 30:643–650CrossRefGoogle Scholar
  87. 87.
    Chirakadze I, Perets A, Ahmed R (2009) In: Clokie MRJ, Kropinski AM (eds) Bacteriophages: methods and protocols, vol 2. Molecular and applied aspects, vol 502. Humana, Totowa, pp 293–305Google Scholar
  88. 88.
    Singh S, Saluja TP, Kaur M, Khilnani GC (2008) J Clin Lab Anal 22(5):367–374CrossRefGoogle Scholar
  89. 89.
    Minion J, Pai M (2010) Int J Tuberc Lung Dis 14(8):941–951Google Scholar
  90. 90.
    Stella EJ, de la Iglesia AI, Morbidoni HR (2009) J Microbiol Methods 79(3):371–373CrossRefGoogle Scholar
  91. 91.
    Kumar V, Loganathan P, Sivaramakrishnan G, Kriakov J, Dusthakeer A, Subramanyam B, Chan J, Jacobs WR, Rama NP (2008) Tuberculosis 88(6):616–623CrossRefGoogle Scholar
  92. 92.
    Rondon L, Piuri M, Jacobs WR, de Waard J, Hatfull GF, Takiff HE (2011) J Clin Microbiol 49(5):1838–1842CrossRefGoogle Scholar
  93. 93.
    Dreiling B, Bush D, Manna D, Sportmann BP, Steinmark T, Smith D (2010) Accuracy of S. aureus identification by the MicroPhage MRSA/MSSA blood culture test for Bactec. Paper presented at the American Society for Microbiology annual meeting, San DiegoGoogle Scholar
  94. 94.
    Rao SS, Ketha KMV, Atreya CD (2010) Blood 116(21):1375–1376Google Scholar
  95. 95.
    Rao SS, Mohan KVK, Nguyen N, Abraham B, Abdouleva G, Zhang P, Atreya CD (2010) Biochem Biophys Res Commun 395(1):93–98CrossRefGoogle Scholar
  96. 96.
    Balasubramanian S, Sorokulova IB, Vodyanoy VJ, Simonian AL (2007) Biosens Bioelectron 22(6):948–955CrossRefGoogle Scholar
  97. 97.
    Gervais L, Gel M, Allain B, Tolba M, Brovko L, Zourob M, Mandeville R, Griffiths M, Evoy S (2007) Sens Actuators B Chem 125(2):615–621CrossRefGoogle Scholar
  98. 98.
    Lakshmanan RS, Guntupalli R, Hu J, Kim DJ, Petrenko VA, Barbaree JM, Chin BA (2007) J Microbiol Methods 71(1):55–60CrossRefGoogle Scholar
  99. 99.
    Arya SK, Singh A, Naidoo R, Wu P, McDermott MT, Evoy S (2011) Analyst 136(3):486–492CrossRefGoogle Scholar
  100. 100.
    Horikawa S, Bedi D, Li SQ, Shen W, Huang SC, Chen IH, Chai YT, Auad ML, Bozack MJ, Barbaree JM, Petrenko VA, Chin BA (2011) Biosens Bioelectron 26(5):2361–2367CrossRefGoogle Scholar
  101. 101.
    Hosseinidoust Z, Van de Ven TGM, Tufenkji N (2011) Langmuir 27(9):5472–5480CrossRefGoogle Scholar
  102. 102.
    Tolba M, Minikh O, Brovko LY, Evoy S, Griffiths MW (2010) Appl Environ Microbiol 76(2):528–535CrossRefGoogle Scholar
  103. 103.
    Minikh O, Tolba M, Brovko LY, Griffiths MW (2010) J Microbiol Methods 82(2):177–183CrossRefGoogle Scholar
  104. 104.
    Petty NK, Evans TJ, Fineran PC, Salmond GP (2007) Trends Biotechnol 25(1):7–15CrossRefGoogle Scholar
  105. 105.
    Monk AB, Rees CD, Barrow P, Hagens S, Harper DR (2010) Lett Appl Microbiol 51(4):363–369CrossRefGoogle Scholar
  106. 106.
    Goodridge L, Gallaccio A, Griffiths MW (2003) Appl Environ Microbiol 69(9):5364–5371CrossRefGoogle Scholar
  107. 107.
    Zink R, Loessner MJ (1992) Appl Environ Microbiol 58:296–302Google Scholar
  108. 108.
    Loessner MJ, Kramer K, Ebel F, Scherer S (2002) Mol Microbiol 44(2):335–349CrossRefGoogle Scholar
  109. 109.
    Eriksson U, Svenson SB, Lonngren J, Lindberg AA (1979) J Gen Virol 43:503–511CrossRefGoogle Scholar
  110. 110.
    Wu Y, Brovko L, Griffiths MW (2001) Lett Appl Microbiol 33(4):311–315CrossRefGoogle Scholar
  111. 111.
    Rybniker J, Kramme S, Small PL (2006) J Med Microbiol 55(1):37–42CrossRefGoogle Scholar
  112. 112.
    Foddai A, Elliott CT, Grant IR (2010) Appl Environ Microbiol 76(6):1777–1782CrossRefGoogle Scholar
  113. 113.
    Tetart F, Repoila F, Monod C, Krisch HM (1996) J Mol Biol 258(5):726–731CrossRefGoogle Scholar
  114. 114.
    Michel A, Clermont O, Denamur E, Tenaillon O (2010) Appl Environ Microbiol 76(21):7310–7313CrossRefGoogle Scholar
  115. 115.
    Bardarov S, Dou H, Eisenach K, Banaiee N, Ya S, Chan J, Jacobs WR, Riska PF (2003) Diagn Microbiol Infect Dis 45(1):53–61CrossRefGoogle Scholar
  116. 116.
    Albert H, Trollip A, Seaman I, Mole RJ (2004) Int J Tuberc Lung Dis 8(9):1114–1119Google Scholar
  117. 117.
    Rees JC, Voorhees KJ (2005) Rapid Commun Mass Spectrom 19(19):2757–2761CrossRefGoogle Scholar
  118. 118.
    Goodridge L, Griffiths MW (2002) Food Res Int 35:863–870CrossRefGoogle Scholar
  119. 119.
    Shabani A, Zourob M, Allain B, Marquette CA, Lawrence MF, Mandeville R (2008) Anal Chem 80(24):9475–9482CrossRefGoogle Scholar
  120. 120.
    Scholl D, Adhya S, Merril C (2005) Appl Environ Microbiol 71(8):4872–4874CrossRefGoogle Scholar
  121. 121.
    Seo S, Kim HC, Cheng MS, Ruan XC, Ruan W (2006) J Vac Sci Technol B 24(6):3133–3138CrossRefGoogle Scholar
  122. 122.
    Yim PB, Clarke ML, McKinstry M, Lacerda SHD, Pease LF, Dobrovolskaia MA, Kang HG, Read TD, Sozhamannan S, Hwang JS (2009) Biotechnol Bioeng 104(6):1059–1067CrossRefGoogle Scholar
  123. 123.
    Seo S, Dobozi-King M, Young RF, Kish LB, Cheng MS (2008) Microelectron Eng 85(7):1484–1489CrossRefGoogle Scholar
  124. 124.
    Dobozi-King M, Seo S, Ju K, Young R, Cheng M, Kish LB (2005) J Biol Phys Chem 5:3–7CrossRefGoogle Scholar
  125. 125.
    Ulitzur N, Ulitzur S (2006) Appl Environ Microbiol 72(12):7455–7459CrossRefGoogle Scholar
  126. 126.
    Squirrell DJ, Price RL, Murphy MJ (2002) Anal Chim Acta 457(1):109–114CrossRefGoogle Scholar
  127. 127.
    Neufeld T, Mittelman AS, Buchner V, Rishpon J (2005) Anal Chem 77(2):652–657CrossRefGoogle Scholar
  128. 128.
    Stewart GSAB, Jassim SAA, Denyer SP, Newby P, Linley K, Dhir VK (1998) J Appl Microbiol 84:777–783CrossRefGoogle Scholar
  129. 129.
    Kuhn J, Suissa M, Chiswell D, Azriel A, Berman B, Shahar D, Reznick S, Sharf R, Wyse J, Bar-On T, Cohen I, Giles R, Weiser I, Lubinsky-Mink S, Ulitzur S (2002) Int J Food Microbiol 74(3):217–227CrossRefGoogle Scholar
  130. 130.
    Santos SB, Fernandes E, Carvalho CM, Sillankorva S, Krylov VN, Pleteneva EA, Shaburova OV, Nicolau A, Ferreira EC, Azeredo J (2010) Appl Environ Microbiol 76(21):7338–7342CrossRefGoogle Scholar
  131. 131.
    Bennett A, Davids F, Vlahodimou S, Banks J, Betts R (1997) J Appl Microbiol 83(2):259–265CrossRefGoogle Scholar
  132. 132.
    Sorokulova IB, Olsen EV, Chen IH, Fiebor B, Barbaree JM, Vodyanoy VJ, Chin BA, Petrenko VA (2005) J Microbiol Methods 63(1):55–72CrossRefGoogle Scholar
  133. 133.
    Sun W, Brovko L, Griffiths MW (2000) J Ind Microbiol Biotechnol 25:273–275CrossRefGoogle Scholar
  134. 134.
    Irwin P, Gehring A, Tu SI, Brewster J, Fanelli J, Ehrenfeld E (2000) J AOAC Int 83(5):1087–1095Google Scholar
  135. 135.
    Verheust C, Jensen G, Mahillon J (2003) Microbiology 149:2083–2092CrossRefGoogle Scholar
  136. 136.
    Guntupalli R, Sorokulova I, Krumnow A, Pustovyy O, Olsen E, Vodyanoy V (2008) Biosens Bioelectron 24(1):151–154CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Abby E. Smartt
    • 1
  • Tingting Xu
    • 1
  • Patricia Jegier
    • 1
  • Jessica J. Carswell
    • 1
  • Samuel A. Blount
    • 1
  • Gary S. Sayler
    • 1
  • Steven Ripp
    • 1
  1. 1.The University of Tennessee Center for Environmental BiotechnologyKnoxvilleUSA

Personalised recommendations