Skip to main content
Log in

Combined use of liquid chromatography with mass spectrometry and nuclear magnetic resonance for the identification of degradation compounds in an erythromycin formulation

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A commercial erythromycin formulation containing erythromycin A (EA) as the major compound showed the presence of an unknown degradation compound that was co-eluted with erythromycin E (EE) in the European Pharmacopoeia (Ph. Eur.) liquid chromatographic (LC) method. The amount of the degradation compound increased with respect to time. To separate this unknown (UNK1), investigation was performed with different LC methods coupled to ultraviolet detection (LC-UV). With the present Ph. Eur. method, the degradation compound could not be well separated. However, with the most selective LC-UV method (XTerra method), two more degradation products (UNK2 and UNK3) were found in the formulation which could not be observed using other methods because of their poor separation. By combining the results obtained with LC-UV, LC/MS and LC/NMR, the degradation products were identified as pseudoerythromycin A hemiketal (PsEAHK), erythromycin A enol ether carboxylic acid and erythromycin C enol ether carboxylic acid. PsEAHK is known to be a base-catalysed degradation product of EA, whereas the other two degradation products were newly identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pettinga CW, Stark WM, van Abeel FR (1954) J Am Chem Soc 76:569–571

    Article  CAS  Google Scholar 

  2. Wiley PF, Gale R, Pettinga CW, Gerzon K (1957) J Am Chem Soc 79:6074–6077

    Article  CAS  Google Scholar 

  3. Majer J, Martin JR, Egan RS, Corcoran JW (1977) J Am Chem Soc 99:1620–1622

    Article  CAS  Google Scholar 

  4. Martin JR, Egan RS, Goldstein AW, Collum P (1975) Tetrahedron 31:19851988

    Google Scholar 

  5. Martin JR, De Vault RL, Sinclair AC, Stanaszek RS, Johnson P (1982) J Antibiot 35:426–430

    CAS  Google Scholar 

  6. Steigbiegel NH (2000) In: Mandell GL, Bennett JE, Dolin R (eds) Mandell, Douglas, and Bennett’s principles and practice of infectious diseases, 5th edn. Churchill Livingstone, New York

    Google Scholar 

  7. Bryskier AJ, Agouridas C, Gasc J-C (1993) Macrolides, chemistry, pharmacology and clinical uses. Arnette Blackwell, Paris

    Google Scholar 

  8. Flynn EH, Sigal MV, Wiley PF, Gerzon K (1954) J Am Chem Soc 76:3121–3131

    Article  CAS  Google Scholar 

  9. Freiberg LA (1972) US Patent 3,725,385

  10. Atkins PJ, Herbert TO, Jones NB (1986) Int J Pharm 30:199–207

    Article  CAS  Google Scholar 

  11. Kibwage IO, Busson R, Janssen G, Hoogmartens J, Vanderhaeghe H, Bracke J (1987) J Org Chem 52:990–996

    Article  CAS  Google Scholar 

  12. Kirst HA, Wind JA, Paschal JW (1987) J Org Chem 52:4359–4362

    Article  CAS  Google Scholar 

  13. Cachet Th, Van den Mooter G, Hauchecorne R, Vinckier C, Hoogmartens J (1989) Int J Pharm 55:59–65

    Article  CAS  Google Scholar 

  14. Vinckier C, Hauchecorne R, Cachet Th, Van den Mooter G, Hoogmartens J (1989) Int J Pharm 55:67–76

    Article  CAS  Google Scholar 

  15. Paesen J, Khan K, Roets E, Hoogmartens J (1994) Int J Pharm 113:215–222

    Article  Google Scholar 

  16. Kim JH, Heinze TM, Beger R, Pothuluri JV, Cerniglia CE (2004) Int J Pharm 271:63–76

    Article  CAS  Google Scholar 

  17. Paesen J, Roets E, Hoogmartens J (1991) Chromatographia 32:162–166

    Article  CAS  Google Scholar 

  18. European Directorate for the Quality of Medicines (2011) European Pharmacopoeia, 7th edn.. Council of Europe, Strasbourg, France 1/2008:0179

  19. Harang V, Westerlund D (1999) Chromatographia 50:525–531

    Article  CAS  Google Scholar 

  20. Chepkwony HK, Vanderriest I, Nguyo JM, Roets E, Hoogmartens J (2000) J Chromatogr A 870:227–235

    Article  CAS  Google Scholar 

  21. Wardrop J, Ficker D, Franklin S, Gorski RJ (2000) J Pharm Sci 89:1097–1105

    Article  CAS  Google Scholar 

  22. Chepkwony HK, Dehouck P, Roets E, Hoogmartens J (2001) Chromatographia 53:89–92

    Article  CAS  Google Scholar 

  23. Deubel A, Holzgrabe U (2007) J Pharm Biomed Anal 43:493–498

    Article  CAS  Google Scholar 

  24. Dehouck P, Roets E, Hoogmartens J (2003) Chromatographia 57:671–675

    Article  CAS  Google Scholar 

  25. Govaerts C, Chepkwony HK, Van Schepdael A, Roets E, Hoogmartens J (2000) Rapid Commun Mass Spectrom 14:878–884

    Article  CAS  Google Scholar 

  26. Chitneni SK, Govaerts C, Adams E, Van Schepdael A, Hoogmartens J (2004) J Chromatogr A 1056:111–120

    CAS  Google Scholar 

  27. Haghedooren E, Bhupathi Raju KKRVS, Dehouck P, Govaerts C, Van Schepdael A, Hoogmartens J, Adams E (2006) J Pharm Biomed Anal 41:165–175

    Google Scholar 

  28. Deubel A, Fandiño AS, Sörgel F, Holzgrabe U (2006) J Chromatogr A 1136:39–47

    Article  CAS  Google Scholar 

  29. Pendela M, Van den Bossche L, Hoogmartens J, Van Schepdael A, Adams E (2008) J Chromatogr A 1180:108–121

    Article  CAS  Google Scholar 

  30. Van den Bossche L, Lodi A, Schaar J, Shaakov S, Zorzan M, Tranquillini ME, Overballe-Petersen C, Hoogmartens J, Adams E (2010) J Pharm Biomed Anal 53:109–112

    Article  Google Scholar 

Download references

Acknowledgement

The NMR part of this work was supported by the National Scientific Research Fund of Hungary, OTKA K73804.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Adams.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 347 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pendela, M., Béni, S., Haghedooren, E. et al. Combined use of liquid chromatography with mass spectrometry and nuclear magnetic resonance for the identification of degradation compounds in an erythromycin formulation. Anal Bioanal Chem 402, 781–790 (2012). https://doi.org/10.1007/s00216-011-5450-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5450-0

Keywords

Navigation