Analytical and Bioanalytical Chemistry

, Volume 402, Issue 1, pp 299–314 | Cite as

New insights on proteomics of transgenic soybean seeds: evaluation of differential expressions of enzymes and proteins

  • Herbert S. Barbosa
  • Sandra C. C. Arruda
  • Ricardo A. Azevedo
  • Marco A. Z. Arruda
Original Paper

Abstract

This work reports the evaluation of differentially expressed enzymes and proteins from transgenic and nontransgenic soybean seeds. Analysis of malondialdehyde, ascorbate peroxidase (EC 1.11.1.11), glutathione reductase (EC 1.6.4.2), and catalase (EC 1.11.1.6) revealed higher levels (29.8, 30.6, 71.4, and 35.3%, respectively) in transgenic seeds than in nontransgenic seeds. Separation of soybean seed proteins was done by two-dimensional polyacrylamide gel electrophoresis, and 192 proteins were identified by matrix-assisted laser desorption/ionization (MALDI) quadrupole time-of-flight (QTOF) mass spectrometry (MS) and electrospray ionization (ESI) QTOF MS. Additionally, the enzyme CP4 EPSPS, involved in the genetic modification, was identified by enzymatic digestions using either trypsin or chymotrypsin and ESI-QTOF MS/MS for identification. From the proteins identified, actin fragment, cytosolic glutamine synthetase, glycinin subunit G1, and glycine-rich RNA-binding protein were shown to be differentially expressed after analysis using the two-dimensional difference gel electrophoresis technique, and applying a regulator factor of 1.5 or greater.

Figure

Application of in gel electrophoretic techniques for evaluation of transgenic soybean seeds from differential expressions of enzymes and proteins

Keywords

Two-dimensional difference gel electrophoresis Mass spectrometry Reactive oxygen species Genetically modified organisms 

References

  1. 1.
    SoyStats, The American Soybean Association. http://www.soystats.com. Accessed 16 Jun 2011
  2. 2.
    Monsanto do Brasil. http://www.monsanto.com.br. Accessed 16 Jun 2011
  3. 3.
    Uzogara SG (2000) Biotechnol Adv 18:179–206CrossRefGoogle Scholar
  4. 4.
    Kim Y, Choi SJ, Lee H, Moon TW (2006) J Microbiol Biotechnol 16:25–31Google Scholar
  5. 5.
    Brandão AR, Barbosa HS, Arruda MAZ (2010) J Proteomics 73:1433–1440CrossRefGoogle Scholar
  6. 6.
    Sussulini A, Souza GHMF, Eberlin MN, Arruda MAZ (2007) J Anal At Spectrom 22:1501–1506CrossRefGoogle Scholar
  7. 7.
    Mataveli LRV, Pohl P, Mounicou S, Arruda MAZ, Szpunnar J (2010) Metallomics 2:800–805CrossRefGoogle Scholar
  8. 8.
    Foyer CH, Noctor G (2005) Plant Cell 17:1866–1875CrossRefGoogle Scholar
  9. 9.
    Gill SS, Tuteja N (2010) Plant Physiol Biochem 48:909–930CrossRefGoogle Scholar
  10. 10.
    Arruda MAZ, Azevedo RA (2009) Ann Appl Biol 155:301–307CrossRefGoogle Scholar
  11. 11.
    Gill SS, Khan NA, Anjum NA, Tuteja N (2011) Plant Stress 5:1–23Google Scholar
  12. 12.
    Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Trends Plant Sci 9:490–498CrossRefGoogle Scholar
  13. 13.
    Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Funct Plant Biol 32:481–494CrossRefGoogle Scholar
  14. 14.
    Gratão PL, Monteiro CC, Antunes AM, Peres LEP, Azevedo RA (2008) Ann Appl Biol 153:321–333CrossRefGoogle Scholar
  15. 15.
    Dalton TP, Shertzer HG, Puga A (1999) Annu Rev Pharmacol Toxicol 39:67–101CrossRefGoogle Scholar
  16. 16.
    Marouga R, David S, Hawkins E (2005) Anal Bioanal Chem 382:669–678CrossRefGoogle Scholar
  17. 17.
    Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Anal Bioanal Chem 389:1017–1031CrossRefGoogle Scholar
  18. 18.
    Moldes CA, Médici LO, Abrahão OS, Tsai SM, Azevedo RA (2008) Acta Physiol Plant 30:469–479CrossRefGoogle Scholar
  19. 19.
    Azevedo RA, Alas RM, Smith RJ, Lea PJ (1998) Physiol Plant 104:280–292CrossRefGoogle Scholar
  20. 20.
    Nakano Y, Asada K (1981) Plant Cell Physiol 22:867–880Google Scholar
  21. 21.
    Gomes-Junior RA, Moldes CA, Delite FS, Gratão PL, Mazzafera P, Lea PJ, Azevedo RA (2006) Plant Physiol Biochem 44:420–429CrossRefGoogle Scholar
  22. 22.
    Giannopolis CN, Reis SK (1977) Plant Physiol 59:309–314CrossRefGoogle Scholar
  23. 23.
    Gomes-Junior RA, Gratao PL, Gaziola SA, Mazzafera P, Lea PJ, Azevedo RA (2007) Funct Plant Biol 34:449–456CrossRefGoogle Scholar
  24. 24.
    Laemmli UK (1970) Nature 227:680–685CrossRefGoogle Scholar
  25. 25.
    Sussulini A, Garcia JS, Mesco MF, Moraes DP, Flores EMM, Pérez CA, Arruda MAZ (2007) Microchim Acta 158:173–180CrossRefGoogle Scholar
  26. 26.
    Bradford MM (1976) Anal Biochem 72:248–254CrossRefGoogle Scholar
  27. 27.
    Berkelman T, Stenstedt T (1998) 2-D electrophoresis - principles and methods. Amersham Biosciences, UppsalaGoogle Scholar
  28. 28.
    Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004) Electrophoresis 25:1327–1333CrossRefGoogle Scholar
  29. 29.
    Sergiev IG, Alexieva VS, Ivanov SV, Moskova II, Karanov EN (2006) Pestic Biochem Physiol 85:139–146CrossRefGoogle Scholar
  30. 30.
    Ferreira RR, Fornazier RF, Vitória AP, Lea PJ, Azevedo RA (2002) J Plant Nutr 25:327–342CrossRefGoogle Scholar
  31. 31.
    Yu W, Zhang R, Li R, Guo S (2007) Plant Sci 172:497–504CrossRefGoogle Scholar
  32. 32.
    Donahue JL, Okpodu CM, Cramer CL, Grabau EA, Alscher AG (1997) Plant Physiol 113:249–257Google Scholar
  33. 33.
    Geoffroy L, Teisseire H, Couderchet M, Vernet G (2002) Pestic Biochem Physiol 72:178–185CrossRefGoogle Scholar
  34. 34.
    Kendall AC, Keys AJ, Turner JC, Lea PJ, Miflin BJ (1983) Planta 159:505–511CrossRefGoogle Scholar
  35. 35.
    Holtman WL, Heistek JC, Mattern KA, Bakhuizen R, Douma AC (1994) Plant Sci 99:43–53CrossRefGoogle Scholar
  36. 36.
    Xu C, Garrett WM, Sullivan J, Caperna T, Natarajan SS (2006) Phytochemistry 67:2431–2440CrossRefGoogle Scholar
  37. 37.
    Brechenmacher L, Lee J, Sachdev S, Song Z, Nguyen THN, Joshi T, Oehrle N, Libault M, Mooney B, Xu D, Cooper B, Stacey G (2009) Plant Physiol 149:670–682CrossRefGoogle Scholar
  38. 38.
    Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson HA, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl TM, Terryn N, Gielen J, Villarroel R, De Clerck R, Montagu MV, Lecharny A, Auborg S, Gy I, Kreis M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian KD, Rieger M, Schaeffer M, Funk B, Mueller-Auer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Düsterhöft A, Moores T, Jones JDG, Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes HW, Klosterman S, Schueller C, Chalwatzis N (1998) Nature 391:485–488CrossRefGoogle Scholar
  39. 39.
    Natarajan SS, Xu C, Bae H, Caperna TJ, Garret W (2006) J Agric Food Chem 54:3114–3120CrossRefGoogle Scholar
  40. 40.
    Krishnan HB, Oehrle NW, Natarajan SS (2009) Proteomics 9:3174–3188CrossRefGoogle Scholar
  41. 41.
    Stewart RRC, Bewley JD (1980) Plant Physiol 65:245–248CrossRefGoogle Scholar
  42. 42.
    Krishnan HB (2001) Plant Sci 160:979–986CrossRefGoogle Scholar
  43. 43.
    Wang W, Vinocur B, Altman A (2003) Planta 218:1–14CrossRefGoogle Scholar
  44. 44.
    ExPASy proteomics server. http://www.expasy.org. Accessed 10 Jun 2011
  45. 45.
    Campbell SA, Close T (1997) New Phytol 137:61–74CrossRefGoogle Scholar
  46. 46.
    Yeboah NA, Arahira M, Nong VH, Zhang D, Kadokura K, Watanabe A, Fukazawa C (1998) Plant Mol Biol 36:407–415CrossRefGoogle Scholar
  47. 47.
    Dixon DP, Skipsey M, Edwards R (2010) Phytochemistry 71:338–350CrossRefGoogle Scholar
  48. 48.
    Ghelfi A, Gaziola SA, Cia MC, Chabregas SM, Falco MC, Kuser-Falcão PR, Azevedo RA (2011) Ann Appl Biol 159:267–280CrossRefGoogle Scholar
  49. 49.
    Alam I, Lee DG, Kim KH, Park CH, Sharmin SA, Lee H, Oh KW, Yun BW, Lee BH (2010) J Biosci 35:49–62CrossRefGoogle Scholar
  50. 50.
    Kim VH, Choi SJ, Lee HA, Moon TW (2006) J Microbiol Biotecnol 16:25–31Google Scholar
  51. 51.
    Sickmann A, Marcus K, Schäfer H, Dörje EB, Lehr S, Herkner A, Suer S, Bahr I, Meyer HE (2001) Electrophoresis 22:1669–1676CrossRefGoogle Scholar
  52. 52.
    Ocana MF, Fraser PD, Patel RKP, Halket JM, Bramley PM (2007) Rapid Commun Mass Spectrom 21:319–328CrossRefGoogle Scholar
  53. 53.
    Heinemeyer J, Scheibe B, Schmitz UK, Braun HP (2009) J Proteomics 72:539–544CrossRefGoogle Scholar
  54. 54.
    Eravci M, Fuxius S, Broedel O, Weist SE, Mansmann U, Schluter H, Tiemann J, Baumgartner A (2007) Proteomics 7:513–523CrossRefGoogle Scholar
  55. 55.
    Arruda SCC, Barbosa HS, Azevedo RA, Arruda MAZ (2011) Analyst. doi:10.1039/c1an15513j
  56. 56.
    Shin JS, Kim KM, Lee DJ, Burgos NR, Kuk YI (2011) Field Crop Res 121:324–332CrossRefGoogle Scholar
  57. 57.
    Forde BC, Lea PJ (2007) J Exp Bot 58:2339–2358CrossRefGoogle Scholar
  58. 58.
    Lea PJ, Miflin BJ (2003) Plant Physiol Biochem 41:555–564CrossRefGoogle Scholar
  59. 59.
    Thanh VH, Shibasaki K (1978) J Agric Food Chem 26:692–695CrossRefGoogle Scholar
  60. 60.
    Kim JY, Kim WY, Kwak KJ, Oh SH, Han YS, Kang H (2010) J Exp Bot 61:2317–2325CrossRefGoogle Scholar
  61. 61.
    Schmidt F, Marnef A, Cheung MK, Wilson I, Hancock J, Staiger D, Ladomery M (2010) Mol Biol Rep 37:839–845CrossRefGoogle Scholar
  62. 62.
    Kazan K (2003) Trends Plant Sci 8:468–471CrossRefGoogle Scholar
  63. 63.
    Cheng Y, Chen X (2004) Curr Opin Plant Biol 7:20–25CrossRefGoogle Scholar
  64. 64.
    Wang QL, Li ZH (2007) Front Biosci 12:3975–3982Google Scholar
  65. 65.
    Kim YO, Pan S, Jung CH, Kang H (2007) Plant Cell Physiol 48:1170–1181CrossRefGoogle Scholar
  66. 66.
    Pageau K, Reisdorf-Cren M, Morot-Gaudry JF, Masclaux-Daubresse C (2006) J Exp Biol 57:547–557Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Herbert S. Barbosa
    • 1
    • 2
  • Sandra C. C. Arruda
    • 3
  • Ricardo A. Azevedo
    • 3
  • Marco A. Z. Arruda
    • 1
    • 2
  1. 1.Spectrometry, Sample Preparation and Mechanization Group - GEPAM, Institute of ChemistryUniversity of Campinas - UNICAMPCampinasBrazil
  2. 2.National Institute of Science and Technology for Bioanalytics, Institute of ChemistryUniversity of Campinas – UNICAMPCampinasBrazil
  3. 3.Laboratory of Biochemistry and Genetics of Plants, Department of GeneticsEscola Superior de Agricultura Luiz de Queiroz, ESALQ, USPPiracicabaBrazil

Personalised recommendations