Skip to main content

Advertisement

Log in

New insights on proteomics of transgenic soybean seeds: evaluation of differential expressions of enzymes and proteins

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This work reports the evaluation of differentially expressed enzymes and proteins from transgenic and nontransgenic soybean seeds. Analysis of malondialdehyde, ascorbate peroxidase (EC 1.11.1.11), glutathione reductase (EC 1.6.4.2), and catalase (EC 1.11.1.6) revealed higher levels (29.8, 30.6, 71.4, and 35.3%, respectively) in transgenic seeds than in nontransgenic seeds. Separation of soybean seed proteins was done by two-dimensional polyacrylamide gel electrophoresis, and 192 proteins were identified by matrix-assisted laser desorption/ionization (MALDI) quadrupole time-of-flight (QTOF) mass spectrometry (MS) and electrospray ionization (ESI) QTOF MS. Additionally, the enzyme CP4 EPSPS, involved in the genetic modification, was identified by enzymatic digestions using either trypsin or chymotrypsin and ESI-QTOF MS/MS for identification. From the proteins identified, actin fragment, cytosolic glutamine synthetase, glycinin subunit G1, and glycine-rich RNA-binding protein were shown to be differentially expressed after analysis using the two-dimensional difference gel electrophoresis technique, and applying a regulator factor of 1.5 or greater.

Application of in gel electrophoretic techniques for evaluation of transgenic soybean seeds from differential expressions of enzymes and proteins

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. SoyStats, The American Soybean Association. http://www.soystats.com. Accessed 16 Jun 2011

  2. Monsanto do Brasil. http://www.monsanto.com.br. Accessed 16 Jun 2011

  3. Uzogara SG (2000) Biotechnol Adv 18:179–206

    Article  CAS  Google Scholar 

  4. Kim Y, Choi SJ, Lee H, Moon TW (2006) J Microbiol Biotechnol 16:25–31

    Google Scholar 

  5. Brandão AR, Barbosa HS, Arruda MAZ (2010) J Proteomics 73:1433–1440

    Article  Google Scholar 

  6. Sussulini A, Souza GHMF, Eberlin MN, Arruda MAZ (2007) J Anal At Spectrom 22:1501–1506

    Article  CAS  Google Scholar 

  7. Mataveli LRV, Pohl P, Mounicou S, Arruda MAZ, Szpunnar J (2010) Metallomics 2:800–805

    Article  CAS  Google Scholar 

  8. Foyer CH, Noctor G (2005) Plant Cell 17:1866–1875

    Article  CAS  Google Scholar 

  9. Gill SS, Tuteja N (2010) Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  10. Arruda MAZ, Azevedo RA (2009) Ann Appl Biol 155:301–307

    Article  CAS  Google Scholar 

  11. Gill SS, Khan NA, Anjum NA, Tuteja N (2011) Plant Stress 5:1–23

    Google Scholar 

  12. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Trends Plant Sci 9:490–498

    Article  CAS  Google Scholar 

  13. Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Funct Plant Biol 32:481–494

    Article  Google Scholar 

  14. Gratão PL, Monteiro CC, Antunes AM, Peres LEP, Azevedo RA (2008) Ann Appl Biol 153:321–333

    Article  Google Scholar 

  15. Dalton TP, Shertzer HG, Puga A (1999) Annu Rev Pharmacol Toxicol 39:67–101

    Article  CAS  Google Scholar 

  16. Marouga R, David S, Hawkins E (2005) Anal Bioanal Chem 382:669–678

    Article  CAS  Google Scholar 

  17. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Anal Bioanal Chem 389:1017–1031

    Article  CAS  Google Scholar 

  18. Moldes CA, Médici LO, Abrahão OS, Tsai SM, Azevedo RA (2008) Acta Physiol Plant 30:469–479

    Article  CAS  Google Scholar 

  19. Azevedo RA, Alas RM, Smith RJ, Lea PJ (1998) Physiol Plant 104:280–292

    Article  CAS  Google Scholar 

  20. Nakano Y, Asada K (1981) Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  21. Gomes-Junior RA, Moldes CA, Delite FS, Gratão PL, Mazzafera P, Lea PJ, Azevedo RA (2006) Plant Physiol Biochem 44:420–429

    Article  CAS  Google Scholar 

  22. Giannopolis CN, Reis SK (1977) Plant Physiol 59:309–314

    Article  Google Scholar 

  23. Gomes-Junior RA, Gratao PL, Gaziola SA, Mazzafera P, Lea PJ, Azevedo RA (2007) Funct Plant Biol 34:449–456

    Article  CAS  Google Scholar 

  24. Laemmli UK (1970) Nature 227:680–685

    Article  CAS  Google Scholar 

  25. Sussulini A, Garcia JS, Mesco MF, Moraes DP, Flores EMM, Pérez CA, Arruda MAZ (2007) Microchim Acta 158:173–180

    Article  CAS  Google Scholar 

  26. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  27. Berkelman T, Stenstedt T (1998) 2-D electrophoresis - principles and methods. Amersham Biosciences, Uppsala

    Google Scholar 

  28. Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004) Electrophoresis 25:1327–1333

    Article  CAS  Google Scholar 

  29. Sergiev IG, Alexieva VS, Ivanov SV, Moskova II, Karanov EN (2006) Pestic Biochem Physiol 85:139–146

    Article  CAS  Google Scholar 

  30. Ferreira RR, Fornazier RF, Vitória AP, Lea PJ, Azevedo RA (2002) J Plant Nutr 25:327–342

    Article  CAS  Google Scholar 

  31. Yu W, Zhang R, Li R, Guo S (2007) Plant Sci 172:497–504

    Article  CAS  Google Scholar 

  32. Donahue JL, Okpodu CM, Cramer CL, Grabau EA, Alscher AG (1997) Plant Physiol 113:249–257

    CAS  Google Scholar 

  33. Geoffroy L, Teisseire H, Couderchet M, Vernet G (2002) Pestic Biochem Physiol 72:178–185

    Article  CAS  Google Scholar 

  34. Kendall AC, Keys AJ, Turner JC, Lea PJ, Miflin BJ (1983) Planta 159:505–511

    Article  CAS  Google Scholar 

  35. Holtman WL, Heistek JC, Mattern KA, Bakhuizen R, Douma AC (1994) Plant Sci 99:43–53

    Article  CAS  Google Scholar 

  36. Xu C, Garrett WM, Sullivan J, Caperna T, Natarajan SS (2006) Phytochemistry 67:2431–2440

    Article  CAS  Google Scholar 

  37. Brechenmacher L, Lee J, Sachdev S, Song Z, Nguyen THN, Joshi T, Oehrle N, Libault M, Mooney B, Xu D, Cooper B, Stacey G (2009) Plant Physiol 149:670–682

    Article  CAS  Google Scholar 

  38. Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson HA, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl TM, Terryn N, Gielen J, Villarroel R, De Clerck R, Montagu MV, Lecharny A, Auborg S, Gy I, Kreis M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian KD, Rieger M, Schaeffer M, Funk B, Mueller-Auer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Düsterhöft A, Moores T, Jones JDG, Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes HW, Klosterman S, Schueller C, Chalwatzis N (1998) Nature 391:485–488

    Article  CAS  Google Scholar 

  39. Natarajan SS, Xu C, Bae H, Caperna TJ, Garret W (2006) J Agric Food Chem 54:3114–3120

    Article  CAS  Google Scholar 

  40. Krishnan HB, Oehrle NW, Natarajan SS (2009) Proteomics 9:3174–3188

    Article  CAS  Google Scholar 

  41. Stewart RRC, Bewley JD (1980) Plant Physiol 65:245–248

    Article  CAS  Google Scholar 

  42. Krishnan HB (2001) Plant Sci 160:979–986

    Article  CAS  Google Scholar 

  43. Wang W, Vinocur B, Altman A (2003) Planta 218:1–14

    Article  CAS  Google Scholar 

  44. ExPASy proteomics server. http://www.expasy.org. Accessed 10 Jun 2011

  45. Campbell SA, Close T (1997) New Phytol 137:61–74

    Article  CAS  Google Scholar 

  46. Yeboah NA, Arahira M, Nong VH, Zhang D, Kadokura K, Watanabe A, Fukazawa C (1998) Plant Mol Biol 36:407–415

    Article  CAS  Google Scholar 

  47. Dixon DP, Skipsey M, Edwards R (2010) Phytochemistry 71:338–350

    Article  CAS  Google Scholar 

  48. Ghelfi A, Gaziola SA, Cia MC, Chabregas SM, Falco MC, Kuser-Falcão PR, Azevedo RA (2011) Ann Appl Biol 159:267–280

    Article  CAS  Google Scholar 

  49. Alam I, Lee DG, Kim KH, Park CH, Sharmin SA, Lee H, Oh KW, Yun BW, Lee BH (2010) J Biosci 35:49–62

    Article  CAS  Google Scholar 

  50. Kim VH, Choi SJ, Lee HA, Moon TW (2006) J Microbiol Biotecnol 16:25–31

    Google Scholar 

  51. Sickmann A, Marcus K, Schäfer H, Dörje EB, Lehr S, Herkner A, Suer S, Bahr I, Meyer HE (2001) Electrophoresis 22:1669–1676

    Article  CAS  Google Scholar 

  52. Ocana MF, Fraser PD, Patel RKP, Halket JM, Bramley PM (2007) Rapid Commun Mass Spectrom 21:319–328

    Article  CAS  Google Scholar 

  53. Heinemeyer J, Scheibe B, Schmitz UK, Braun HP (2009) J Proteomics 72:539–544

    Article  CAS  Google Scholar 

  54. Eravci M, Fuxius S, Broedel O, Weist SE, Mansmann U, Schluter H, Tiemann J, Baumgartner A (2007) Proteomics 7:513–523

    Article  CAS  Google Scholar 

  55. Arruda SCC, Barbosa HS, Azevedo RA, Arruda MAZ (2011) Analyst. doi:10.1039/c1an15513j

  56. Shin JS, Kim KM, Lee DJ, Burgos NR, Kuk YI (2011) Field Crop Res 121:324–332

    Article  Google Scholar 

  57. Forde BC, Lea PJ (2007) J Exp Bot 58:2339–2358

    Article  CAS  Google Scholar 

  58. Lea PJ, Miflin BJ (2003) Plant Physiol Biochem 41:555–564

    Article  CAS  Google Scholar 

  59. Thanh VH, Shibasaki K (1978) J Agric Food Chem 26:692–695

    Article  Google Scholar 

  60. Kim JY, Kim WY, Kwak KJ, Oh SH, Han YS, Kang H (2010) J Exp Bot 61:2317–2325

    Article  CAS  Google Scholar 

  61. Schmidt F, Marnef A, Cheung MK, Wilson I, Hancock J, Staiger D, Ladomery M (2010) Mol Biol Rep 37:839–845

    Article  CAS  Google Scholar 

  62. Kazan K (2003) Trends Plant Sci 8:468–471

    Article  CAS  Google Scholar 

  63. Cheng Y, Chen X (2004) Curr Opin Plant Biol 7:20–25

    Article  CAS  Google Scholar 

  64. Wang QL, Li ZH (2007) Front Biosci 12:3975–3982

    CAS  Google Scholar 

  65. Kim YO, Pan S, Jung CH, Kang H (2007) Plant Cell Physiol 48:1170–1181

    Article  CAS  Google Scholar 

  66. Pageau K, Reisdorf-Cren M, Morot-Gaudry JF, Masclaux-Daubresse C (2006) J Exp Biol 57:547–557

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo, Brazil), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasília, Brazil), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brasília, Brazil), Financiadora de Estudos e Projetos (FINEP, Brasília, Brazil), and the Brazilian Synchrotron Light Laboratory – Associação Brasileira de Tecnologia de Luz Síncrotron – Proteomic Network of the São Paulo state for financial support and fellowships. We are indebted to Lyndel W. Meinhardt (USDA, USA) for a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. Z. Arruda.

Additional information

Published in the 10th Anniversary Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbosa, H.S., Arruda, S.C.C., Azevedo, R.A. et al. New insights on proteomics of transgenic soybean seeds: evaluation of differential expressions of enzymes and proteins. Anal Bioanal Chem 402, 299–314 (2012). https://doi.org/10.1007/s00216-011-5409-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5409-1

Keywords

Navigation