Analytical and Bioanalytical Chemistry

, Volume 402, Issue 5, pp 1739–1748 | Cite as

Surface-attached sensors for cation and anion recognition

Trends

Abstract

The development of surface-attached sensors for cationic and anionic guests is of intense current research interest. In addition to the environmental flexibility, robustness and reusability of such devices, surface-confined sensors typically exhibit an amplified response to target analytes owing to preorganization of the receptor. Whereas redox-active cations may be sensed by studying the cyclic voltammetry of host–guest systems containing ion-selective receptors attached to an appropriate electrode, redox-inactive ionic species require the use of electrochemical impedance spectroscopy, with appropriately functionalized electrodes and redox probes. Alternatively, receptors may be constructed that incorporate an electrochemical or optical reporter group within their structure to provide a macroscopic response to the presence of an ionic guest. This critical review seeks to present an up-to-date, although necessarily selective, account of the progress in the field, and provides insights into possible future developments, including the utilization of receptor–nanoparticle conjugates and mechanically interlocked receptors.

Keywords

Anions Cations Electrochemistry Fluorescence Ion recognition Self-assembled monolayers 

Abbreviations

EIS

electrochemical impedance spectroscopy

Fc/Fc+

ferrocene/ferrocenium

Ppfc/Ppfc+

pentaphenylferrocene/pentaphenylferrocenium

Rct

charge-transfer resistance

SAMs

self-assembled monolayers

TTF

tetrathiafulvalene

Supplementary material

216_2011_5403_MOESM1_ESM.pdf (540 kb)
ESM 1(PDF 540 kb)

References

  1. 1.
    Fraústo da Silva JJR, Williams RJP (2001) The biological chemistry of the elements: the inorganic chemistry of life, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Clarkson TW, Magos L, Myers GJ (2003) New Engl J Med 349:1731–1737CrossRefGoogle Scholar
  3. 3.
    Rowe SM, Miller S, Sorscher EJ (2005) New Engl J Med 352:1992–2001CrossRefGoogle Scholar
  4. 4.
    Moss B (1996) Chem Ind 407–411Google Scholar
  5. 5.
    Yoshihara, K (1996) Top Curr Chem (1996) 176:17–35Google Scholar
  6. 6.
    Fabbrizzi L, Poggi A (1995) Chem Soc Rev 24:197–202CrossRefGoogle Scholar
  7. 7.
    Zheng S, Cardona S, Echegoyen L (2005) Chem Commun 4461–4473Google Scholar
  8. 8.
    Nuzzo RG, Allara DL (1983) J Am Chem Soc 105:4481–4483CrossRefGoogle Scholar
  9. 9.
    Sagiv J (1980) J Am Chem Soc 102:92–98CrossRefGoogle Scholar
  10. 10.
    Allara DL, Nuzzo RG (1985) Langmuir 1:45–52CrossRefGoogle Scholar
  11. 11.
    Rubinstein I, Steinberg S, Tor Y, Shanzer A, Sagiv J (1988) Nature 332:426–429CrossRefGoogle Scholar
  12. 12.
    Steinberg S, Tor Y, Sabatini E, Rubinstein I (1991) J Am Chem Soc 113:5176–5182CrossRefGoogle Scholar
  13. 13.
    Turyan I, Mandler D (1994) Anal Chem 66:58–63CrossRefGoogle Scholar
  14. 14.
    Nagaoka T, Chen ZD, Okuno H, Nakayama M, Ogura K (1999) Anal Sci 15:857–862CrossRefGoogle Scholar
  15. 15.
    Liu A-C, Chen D-C, Lin C-C, Chou H-H, Chen C-H (1999) Anal Chem 71:1549–1552CrossRefGoogle Scholar
  16. 16.
    Yang W-R, Jaramillo D, Gooding JJ, Hibbert, DB, Zhang R, Willet GD, Fisher K (2001) Chem Commun 1982–1983Google Scholar
  17. 17.
    Becker A, Tobias H, Porat Z, Mandler D (2008) J Electroanal Chem 621:214–221CrossRefGoogle Scholar
  18. 18.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  19. 19.
    Flink S, Boukamp BA, van der Berg A, Van Veggel FCJM, Reinhoudt DN (1998) J Am Chem Soc 120:4652–4657CrossRefGoogle Scholar
  20. 20.
    Bandyopadhyay K, Liu H, Liu S-G, Echegoyen L (2000) Chem Commun 141–142Google Scholar
  21. 21.
    Bandyopadhyay K, Liu S-G, Liu H, Echegoyen L (2000) Chem Eur J 6:4385–4392CrossRefGoogle Scholar
  22. 22.
    Colonna B, Echegoyen L (2001) Chem Commun 1104–1105Google Scholar
  23. 23.
    Bandyopadhyay K, Shu L, Liu H, Echegoyen L (2000) Langmuir 16:2706–2716CrossRefGoogle Scholar
  24. 24.
    Zhang S, Echegoyen L (2003) Tetrahedron Lett 44:9079–9082CrossRefGoogle Scholar
  25. 25.
    Zhang S, Echegoyen L (2004) Org Lett 6:791–794CrossRefGoogle Scholar
  26. 26.
    Shervedani RK, Bagherzadeh M (2009) Sens Actuators B 139:657–664CrossRefGoogle Scholar
  27. 27.
    Zhang S, Echegoyen L (2005) J Am Chem Soc 127:2006–2011CrossRefGoogle Scholar
  28. 28.
    Zhang S, Palkar A, Echegoyen L (2006) Langmuir 22:10732–10738CrossRefGoogle Scholar
  29. 29.
    Zhi F, Lu X, Yang J, Wang X, Shang H, Zhang S, Xue Z (2009) J Phys Chem 113:13166–13172Google Scholar
  30. 30.
    Moore AJ, Goldenberg LM, Bryce MR, Petty MC, Monkman AP, Marenco C, Yarwood J, Joyce MJ, Port SN (1998) Adv Mater 10:395–398CrossRefGoogle Scholar
  31. 31.
    Liu H, Liu S, Echegoyen L (1999) Chem Commun 1493–1494Google Scholar
  32. 32.
    Trippé G, Oçafrain M, Besbes M, Monroche V, Lyskawa J, Le Derf F, Sallé M, Becher J, Colonna B, Echegoyen L (2002) New J Chem 26:1320–1323CrossRefGoogle Scholar
  33. 33.
    Lyskawa J, Oçafrain M, Trippé G, Le Derf F, Sallé M, Viel P, Palacin S (2006) Tetrahedron 62:4419–4425CrossRefGoogle Scholar
  34. 34.
    Jensen LG, Nielsen KA, Breton T, Sessler JL, Jeppesen JO, Levillain E, Sanguinet L (2009) Chem Eur J 15:8128–8133CrossRefGoogle Scholar
  35. 35.
    Chung TD, Park J, Kim J, Lim H, Choi M-J, Kim RJ, Chang S-K, Kim H (2001) Anal Chem 73:3975–3980CrossRefGoogle Scholar
  36. 36.
    Bayly SR, Beer PD, Chen GZ (2008) In: Stepnicka P (ed) Ferrocenes: ligands, materials and biomolecules. Wiley, ChichesterGoogle Scholar
  37. 37.
    Alonso E, Lanade A, Raehm L, Kern J-M, Astruc D (1999) C R Acad Sci Ser IIc Chim 2:209–213Google Scholar
  38. 38.
    Beer PD, Davis JJ, Drillsma-Milgrom DA, Szemes F (2002) Chem Commun 1716–1717Google Scholar
  39. 39.
    Cormode DP, Evans AJ, Davis JJ, Beer PD (2010) Dalton Trans 39:6532–6541CrossRefGoogle Scholar
  40. 40.
    Gobi KV, Ohsaka T (2000) J Electroanal Chem 485:61–70CrossRefGoogle Scholar
  41. 41.
    Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, van Veggel FCJM, Reinhoudt DN, Möller M, Gittins DI (2002) Phys Rev Lett 89:203002CrossRefGoogle Scholar
  42. 42.
    Imahori H, Norieda H, Nishimura Y, Yamazaki I, Higuchi K, Kato N, Motohiro T, Yamada H, Tamaki K, Arimura M, Sakata Y (2000) J Phys Chem B 104:1253–1260CrossRefGoogle Scholar
  43. 43.
    van der Veen NJ, Flink S, Deji MA, Egberrink RJM, Van Veggel FCJM, Reinhoudt DN (2000) J Am Chem Soc 122:6112–6113CrossRefGoogle Scholar
  44. 44.
    Basabe-Desmonts L, Beld J, Zimmerman RS, Hernando J, Mela P (2004) García Parajo MF, van Hulst NF, van den Berg A, Reinhoudt DN, Crego-Calama M. J Am Chem Soc 126:7293–7299CrossRefGoogle Scholar
  45. 45.
    Lupo F, Gentile S, Ballistreri FP, Tomaselli GA, Fragalà ME, Gulino A (2010) Analyst 135:2273–2279CrossRefGoogle Scholar
  46. 46.
    Ju H, Lee MH, Kim J, Kim JS, Kim J (2011) Talanta 83:1359–1363CrossRefGoogle Scholar
  47. 47.
    Lupo F, Capici C, Gattuso G, Notti A, Parisi MF, Pappalardo A, Pappalardo S, Gulino A (2010) Chem Mater 22:2829–2834CrossRefGoogle Scholar
  48. 48.
    Daniel MC, Astruc D (2004) Chem Rev 104:293–346CrossRefGoogle Scholar
  49. 49.
    Kim E, Seo S, Seo ML, Jung JH (2010) Analyst 135:149–156CrossRefGoogle Scholar
  50. 50.
    Labande A, Ruiz J, Astruc D (2002) J Am Chem Soc 124:1782–1789CrossRefGoogle Scholar
  51. 51.
    Daniel M-C, Ruiz J, Nalte S, Blais J-C, Astruc D (2003) J Am Chem Soc 125:2617–2618CrossRefGoogle Scholar
  52. 52.
    Beer PD, Cormode DP, Davis JJ (2004) Chem Commun 414–415Google Scholar
  53. 53.
    Massue J, Quinn SJ, Gunnlaugsson T (2008) J Am Chem Soc 130:6900–6901CrossRefGoogle Scholar
  54. 54.
    Beer PD, Gale PA (2001) Angew Chem Int Ed 40:486–516CrossRefGoogle Scholar
  55. 55.
    Lankshear MD, Beer PD (2006) Coord Chem Rev 250:3142–3160CrossRefGoogle Scholar
  56. 56.
    Wisner JA, Beer PD, Drew MGB, Sambrook MR (2002) J Am Chem Soc 124:12469–12476CrossRefGoogle Scholar
  57. 57.
    Sambrook MR, Beer PD, Wisner JA, Paul RL, Cowley AR (2004) J Am Chem Soc 126:15364–15365CrossRefGoogle Scholar
  58. 58.
    Davis JJ, Orlowski GA, Rahman H, Beer PD (2010) Chem Commun 46:54–63CrossRefGoogle Scholar
  59. 59.
    Chmielewski MJ, Davis JJ, Beer PD (2009) Org Biomol Chem 7:415–424CrossRefGoogle Scholar
  60. 60.
    Bayly SR, Gray TM, Chmielewski MJ, Davis JJ, Beer PD (2007) Chem Commun 2234–2236Google Scholar
  61. 61.
    Zhao L, Mullen KM, Chmielewski MJ, Brown A, Bampos N, Beer PD, Davis JJ (2009) New J Chem 33:760–768CrossRefGoogle Scholar
  62. 62.
    Zhao L, Davis JJ, Mullen KM, Chmielewski MJ, Jacobs RMJ, Brown A, Beer PD (2009) Langmuir 25:2935–2940CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Inorganic Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordUK

Personalised recommendations