Structural characterization of heparins from different commercial sources

  • Fuming Zhang
  • Bo Yang
  • Mellisa Ly
  • Kemal Solakyildirim
  • Zhongping Xiao
  • Zhenyu Wang
  • Julie M. Beaudet
  • Amanda Y. Torelli
  • Jonathan S. Dordick
  • Robert J. Linhardt
Original Paper

Abstract

Seven commercial heparin active pharmaceutical ingredients and one commercial low molecular weight from different manufacturers were characterized with a view profiling their physicochemical properties. All heparins had similar molecular weight properties as determined by polyacrylamide gel electrophoresis (MN, 10–11 kDa; MW, 13–14 kDa; polydispersity (PD), 1.3–1.4) and by size exclusion chromatography (MN, 14–16 kDa; MW, 21–25 kDa; PD, 1.4–1.6). one-dimensional 1H- and 13C-nuclear magnetic resonance (NMR) evaluation of the heparin samples was performed, and peaks were fully assigned using two-dimensional NMR. The percentage of glucosamine residues with 3-O-sulfo groups and the percentage of N-sulfo groups and N-acetyl groups ranged from 5.8–7.9%, 78–82%, to 13–14%, respectively. There was substantial variability observed in the disaccharide composition, as determined by high performance liquid chromatography (HPLC)-mass spectral analysis of heparin lyase I–III digested heparins. Heparin oligosaccharide mapping was performed using HPLC following separate treatments with heparin lyase I, II, and III. These maps were useful in qualitatively and quantitatively identifying structural differences between these heparins. The binding affinities of these heparins to antithrombin III and thrombin were evaluated by using a surface plasmon resonance competitive binding assay. This study provides the physicochemical and activity characterization necessary for the appropriate design and synthesis of a generic bioengineered heparin.

Keywords

Heparin Polyacrylamide gel electrophoresis Size exclusion chromatography analysis Molecular weight properties Disaccharide composition High performance liquid chromatography–mass spectrometry Oligosaccharide mapping Nuclear magnetic resonance spectroscopy Surface plasmon resonance 

References

  1. 1.
    Linhardt RJ (2003) Heparin: structure and activity. J Med Chem 46(13):2551–2554CrossRefGoogle Scholar
  2. 2.
    Weintraub AY, Sheiner E (2007) Anticoagulant therapy and thromboprophylaxis in patients with thrombophilia. Arch Gynecol Obstet 276(6):567–571CrossRefGoogle Scholar
  3. 3.
    Bick RL, Frenkel EP, Walenga J, Fareed J, Hoppensteadt DA (2005) Unfractionated heparin, low molecular weight heparins, and pentasaccharide: basic mechanism of actions, pharmacology, and clinical use. Hematol Oncol Clin North Am 19(1):1–51CrossRefGoogle Scholar
  4. 4.
    Nader HB, Dietrich CP (1989) Natural occurrence and possible biological role of heparin. In: Lane DA, Lindahl U (eds) Heparin chemical and biological properties, clinical applications. CRC, Boca Raton, pp 115–133Google Scholar
  5. 5.
    Lindahl U, Backstrom G, Thunberg L, Leder IG (1980) Evidence for a 3-O-sulfated d-glucosamine residue in the antithrombin-binding sequence of heparin. Proc Natl Acad Sci U S A 77(11):6551–6555CrossRefGoogle Scholar
  6. 6.
    Schonberger LB (1998) New variant Creuzfeldt-Jakob disease and bovine spongiform encephalopathy. Infect Disease Clinics North Am 12(1):111–121CrossRefGoogle Scholar
  7. 7.
    Cho JG, Dee SA (2006) Porcine reproductive and respiratory syndrome virus. Theriogenology 66(3):655–662CrossRefGoogle Scholar
  8. 8.
    Guerrini M, Beccati D, Shriver Z, Naggi AM, Bisio A, Capila I, Lansing J, Guglieri S, Fraser B, Al-Hakim A, Gunay S, Viswanathan K, Zhang Z, Robinson L, Venkataraman G, Buhse L, Nasr M, Woodcock J, Langer R, Linhardt RJ, Casu B, Torri G, Sasisekharan R (2008) Oversulfated chondroitin sulfate is a major contaminant in heparin associated with adverse clinical events. Nat Biotechnol 26(6):669–775CrossRefGoogle Scholar
  9. 9.
    Kishimoto TK, Viswanathan K, Ganguly T, Elankumaran S, Smith S et al (2008) Contaminated heparin associated with adverse clinical events and activation of the contact system. N Engl J Med 358(23):2457–2467CrossRefGoogle Scholar
  10. 10.
    Lindahl U, Feingold DS, Roden L (1986) Biosynthesis of heparin. Trends Biochem Sci 11:221–225CrossRefGoogle Scholar
  11. 11.
    Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471CrossRefGoogle Scholar
  12. 12.
    Chen J, Jones CL, Liu J (2007) Using an enzymatic combinatorial approach to identify anticoagulant heparan sulfate structures. Chem Biol 14(9):986–993CrossRefGoogle Scholar
  13. 13.
    Edavettal SC, Lee KA, Negishi M, Linhardt RJ, Liu J, Pedersen LC (2004) Crystal structure and mutational analysis of heparan sulfate 3-O-sulfotransferase isoform 1. J Biol Chem 279(24):25789–25797CrossRefGoogle Scholar
  14. 14.
    Xu D, Moon A, Song D, Pedersen LC, Liu J (2008) Engineering sulfotransferases to modify heparan sulfate. Nat Chem Biol 4(3):200–202CrossRefGoogle Scholar
  15. 15.
    Zhang Z, McCallum SA, Xie J, Nieto L, Corzana F, Jiménez-Barbero J, Chen M, Liu J, Linhardt RJ (2008) Solution structures of chemoenzymatically synthesized heparin and its precursors. J Am Chem Soc 130(39):12998–13007CrossRefGoogle Scholar
  16. 16.
    Liu R, Xu Y, Chen M, Weïwer M, Bridges A, DeAngelis PL, Zhang Q, Linhardt RJ, Liu J (2010) Chemoenzymatic design of heparan sulfate oligosaccharides. J Biol Chem 285(44):34240–34249CrossRefGoogle Scholar
  17. 17.
    Edens RE, Al-Hakim A, Weiler JM, Rethwisch DG, Fareed J, Linhardt RJ (1992) Gradient polyacrylamide gel electrophoresis for determination of the molecular weights of heparin preparations and low-molecular-weight heparin derivatives. J Pharm Sci 81(8):823–827CrossRefGoogle Scholar
  18. 18.
    Wang Z, Yang B, Zhang Z, Ly M, Takieddin M, Mousa S, Liu J, Dordick JS, Linhardt RJ (2011) Control of heparosan N—deacetylation leads to an improved bioengineering heparin. Appl Microbiol Biotechnol 91(1):91–99CrossRefGoogle Scholar
  19. 19.
    Zhang Z, Xie J, Liu H, Liu J, Linhardt RJ (2009) Quantitification of heparan sulfate and heparin disaccharides using ion pairing, reverse-phase, micro-flow, high performance liquid chromatography coupled with electrospray ionization trap mass spectrometry. Anal Chem 81(11):4349–4355CrossRefGoogle Scholar
  20. 20.
    Xiao Z, Tappen BR, Ly M, Zhao W, Canova LP, Guan H, Linhardt RJ (2011) Heparin mapping using heparin lyases and the generation of a novel low molecular weight heparin. Med Chem 54(2):603–610CrossRefGoogle Scholar
  21. 21.
    Guerrini M, Zhang Z, Shriver Z, Naggi A, Masuko S, Langer R, Casu B, Linhardt RJ, Torri G, Sasisekharan R (2009) Orthogonal analytical approaches to detect potential contaminants in heparin. Proc Nat Acad Sci U S A 106(40):16956–16961CrossRefGoogle Scholar
  22. 22.
    Beaudet JM, Weyers A, Solakyildirim K, Yang B, Takieddin M, Mousa S, Zhang F, Linhardt RJ (2011) Affect of autoclave sterilization on the activity and structure of formulated heparin. J Pharm Sci 100(8):3396–3404CrossRefGoogle Scholar
  23. 23.
    Liu Z, Xiao Z, Masuko S, Zhao W, Sterner E, Bansal V, Fareed J, Dordick JS, Zhang F, Linhardt RJ (2011) Mass balance analysis of contaminated heparin product. Anal Biochem 408(1):147–156CrossRefGoogle Scholar
  24. 24.
    Guo X, Condra M, Kimura K, Berth G, Dautzenberg H, Dubin PL (2003) Determination of molecular weight of heparin by size exclusion chromatography with universal calibration. Anal Biochem 312(1):33–39CrossRefGoogle Scholar
  25. 25.
    Bertini S, Bisio A, Torri G, Bensi D, Terbojevich M (2005) Molecular weight determination of heparin and dermatan sulfate by size exclusion chromatography with a triple detector array. Biomacromolec 6(1):168–173CrossRefGoogle Scholar
  26. 26.
    Linhardt RJ (1994) In: Varki A (ed) Current protocols in molecular biology: analysis of glycoconjugates. Wiley-Interscience, Hoboken, pp 17.13.17–17.13.32Google Scholar
  27. 27.
    Merchant ZM, Kim YS, Rice KG, Linhardt RJ (1985) Structure of heparin-derived tetrasaccharides. Biochem J 229(2):369–377Google Scholar
  28. 28.
    Yang B, Weyers A, Baik JY, Sterner E, Sharfstein S, Mousa SA, Zhang F, Dordick JS, Linhardt RJ (2011) Ultraperformance ion-pairing liquid chromatography with on-line electrospray ion trap mass spectrometry for heparin disaccharide analysis. Anal Biochem 415(1):59–66CrossRefGoogle Scholar
  29. 29.
    Linhardt RJ, Loganathan D, Al-Hakim A, Wang HM, Walenga JM, Hoppensteadt D, Fareed J (1990) Oligosaccharide mapping of low molecular weight heparins: structure and activity differences. J Med Chem 33(6):1639–1645CrossRefGoogle Scholar
  30. 30.
    Linhardt RJ, Kerns RJ, Vlahov IR (1996) In: Yalpani M (ed) Heparin and heparin oligosaccharides: preparation, analysis, applications and biological activities, biochemical functions and biotechnology of natural and artificial polymers. ATL Press, Science Publishers, Mt. Prospect, pp 46–62Google Scholar
  31. 31.
    Linhardt RJ (1991) Heparin: an important drug enters its seventh decade. Chem Ind 2:45–50Google Scholar
  32. 32.
    Wang Z, Ly M, Zhang F, Zhong W, Suen A, Dordick JS, Linhardt RJ (2010) E. coli K5 fermentation and the preparation of heparosan, a bioengineered heparin precursor. Biotechnol Bioengin 107(6):968–977Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Fuming Zhang
    • 1
  • Bo Yang
    • 2
  • Mellisa Ly
    • 2
  • Kemal Solakyildirim
    • 2
  • Zhongping Xiao
    • 2
  • Zhenyu Wang
    • 3
  • Julie M. Beaudet
    • 2
    • 3
  • Amanda Y. Torelli
    • 2
    • 3
  • Jonathan S. Dordick
    • 1
    • 3
    • 4
  • Robert J. Linhardt
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  2. 2.Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  3. 3.Department of Biology, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  4. 4.Department of Biomedical EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations