Cancer, pre-cancer and normal oral cells distinguished by dielectrophoresis


Most oral cancers are oral squamous cell carcinomas (OSCC) that arise from the epithelial lining of the oral mucosa. Given that the oral cavity is easily accessible, the disease lends itself to early detection; however, most oral cancers are diagnosed at a late stage, and approximately half of oral cancer sufferers do not survive beyond five years, post-diagnosis. The low survival rate has been attributed to late detection, but there is no accepted, reliable and convenient method for the detection of oral cancer and oral pre-cancer. Dielectrophoresis (DEP) is a label-free technique which can be used to obtain multi-parametric measurements of cell electrical properties. Parameters such as cytoplasmic conductivity and effective membrane capacitance (C Eff) can be non-invasively determined by the technique. In this study, a novel lab-on-a-chip device was used to determine the cytoplasmic conductivity and C Eff of primary normal oral keratinocytes, and pre-cancerous and cancerous oral keratinocyte cell lines. Our results show that the electrical properties of normal, pre-cancerous and cancerous oral keratinocytes are distinct. Furthermore, increasing C Eff and decreasing cytoplasmic conductivity correlate with disease progression which could prove significant for diagnostic and prognostic applications. DEP has the potential to be used as a non-invasive technique to detect oral cancer and oral pre-cancer. Clinical investigation is needed to establish the reliability and temporal relationship of the correlation between oncologic disease progression and the electrical parameters identified in this study. To use this technique as an OSCC detection tool in a clinical setting, further characterisation and refinement is warranted.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Warnakulasuriya S (2009) Global epidemiology of oral and oropharyngeal cancer. Oral Oncol 45(4–5):309–316

    Article  Google Scholar 

  2. 2.

    Silverman S (2003) Oral cancer, 5th edn. B.C. Becker Inc., London

    Google Scholar 

  3. 3.

    Horner MJ, Ries LAG, Krapcho M, Neyman N, Aminou R, Howlader N, Altekruse SF, Feuer EJ, Huang L, Mariotto A, Miller BA, Lewis DR, Eisner MP, Stinchcomb DG (eds) (2008) E.B., SEER Cancer Statistics Review, 1975–2006 National Cancer Institute, Bethesda, MD

  4. 4.

    Silverman SJ (2001) Demographics and occurrence of oral and pharyngeal cancers: the outcomes, the trends, the challenge. J Am Dent Assoc 132(suppl_1):7S–11S

    Google Scholar 

  5. 5.

    Al-Dakkak I (2010) Diagnostic delay broadly associated with more advanced stage oral cancer. Evid Based Dent 11(1):24

    Article  Google Scholar 

  6. 6.

    Bagan J, Sarrion G, Jimenez Y (2010) Oral cancer: clinical features. Oral Oncol 46(6):414–417

    Article  Google Scholar 

  7. 7.

    Silverman S Jr (2007) Mucosal lesions in older adults. J Am Dent Assoc 138(suppl_1):41S–46S

    Google Scholar 

  8. 8.

    Silverman S (1988) Early diagnosis of oral cancer. Cancer 62(S1):1796–1799

    Article  Google Scholar 

  9. 9.

    Shafer WG, Waldron CA (1975) Erythroplakia of the oral cavity. Cancer 36:1021–1028

    Article  CAS  Google Scholar 

  10. 10.

    Sandler HC (1962) Cytological screening for early mouth cancer. Interim report of the Veterans Administration Co-operative Study of Oral Exfoliative Cytology. Cancer 15(6):1119–1124

    Article  CAS  Google Scholar 

  11. 11.

    Burzynski N, Firriolo F, Butters J, Sorrell C (1997) Evaluation of oral cancer screening. J Cancer Educ 12(2):95–99

    CAS  Google Scholar 

  12. 12.

    Malaowalla AM, Silverman S, Mani NJ, Bilimoria KF, Smith LW (1976) Oral cancer in 57,518 industrial workers of Gujarat India. A prevalence and follow-up study. Cancer 37(4):1882–1886

    Article  Google Scholar 

  13. 13.

    Bouquot JE (1986) Common oral lesions found during a mass screening examination. J Am Dent Assoc 112(1):50–57

    CAS  Google Scholar 

  14. 14.

    Sciubba JJ, Collaborative Oral, C.S.G (1999) Improving detection of precancerous and cancerous oral lesions—computer-assisted analysis of the oral brush biopsy. J Am Dent Assoc 130(10):1445–1457

    CAS  Google Scholar 

  15. 15.

    Christian DC (2002) Computer-assisted analysis of oral brush biopsies at an oral cancer screening program. J Am Dent Assoc 133(3):357–362

    Google Scholar 

  16. 16.

    Burt JPH, Pethig R, Gascoyne PRC, Becker FF (1990) Dielectrophoretic characterisation of Friend murine erythroleukaemic cells as a measure of induced differentiation. Biochim Biophys Acta 1034(1):93–101

    Article  CAS  Google Scholar 

  17. 17.

    Huang Y, Wang X-B, Becker FF, Gascoyne PRC (1996) Membrane changes associated with the temperature-sensitive P85gag-mos-dependent transformation of rat kidney cells as determined by dielectrophoresis and electrorotation. Biochim Biophys Acta (BBA)-Biomembranes 1282(1):76–84

    Article  Google Scholar 

  18. 18.

    Gascoyne P, Pethig R, Satayavivad J, Becker FF, Ruchirawat M (1997) Dielectrophoretic detection of changes in erythrocyte membranes following malarial infection. Biochim Biophys Acta (BBA)-Biomembranes 1323(2):240–252

    Article  CAS  Google Scholar 

  19. 19.

    Gascoyne PRC, Noshari J, Becker FF, Pethig R (1994) Use of dielectrophoretic collection spectra for characterizing differences between normal and cancerous cells. Industry Applications, IEEE Transactions on 30(4):829–834

    Article  Google Scholar 

  20. 20.

    An J, Lee J, Lee S, Park J, Kim B (2009) Separation of malignant human breast cancer epithelial cells from healthy epithelial cells using an advanced dielectrophoresis-activated cell sorter (DACS). Anal Bioanal Chem 394(3):801–809

    Article  CAS  Google Scholar 

  21. 21.

    Broche LM, Bhadal N, Lewis MP, Porter S, Hughes MP, Labeed FH (2007) Early detection of oral cancer—is dielectrophoresis the answer? Oral Oncol 43(2):199–203

    Article  CAS  Google Scholar 

  22. 22.

    Yang L, Arias L, Lane T, Yancey M, Mamouni J (2011) Real-time electrical impedance-based measurement to distinguish oral cancer cells and non-cancer oral epithelial cells. Anal Bioanal Chem 399(5):1823–1833

    Article  CAS  Google Scholar 

  23. 23.

    Broche LM, Hoettges KF, Ogin SL, Kass GEN, Hughes MP (2011) Rapid, automated measurement of dielectrophoresis forces using DEP-activated microwells. Electrophoresis (in press)

  24. 24.

    Pohl HA (1978) Dielectrophoresis the behavior of neutral matter in nonuniform electric fields. Cambridge University Press, Cambridge, NY

    Google Scholar 

  25. 25.

    Huang Y, Holzel R, Pethig R, Wang X-B (1992) Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Phys Med Biol 37(7):1499–1517

    Article  CAS  Google Scholar 

  26. 26.

    Irimajiri A, Hanai T, Inouye A (1979) Dielectric theory of multi-stratified shell-model with its application to a lymphoma cell. J Theor Biol 78(2):251–269

    Article  CAS  Google Scholar 

  27. 27.

    Hoettges KF, Hubner Y, Broche LM, Ogin SL, Kass GEN, Hughes MP (2008) Dielectrophoresis-activated multiwell plate for label-free high-throughput drug assessment. Am Chem Soc 80(6):2063–2068

    CAS  Google Scholar 

  28. 28.

    Hubner Y, Hoettges KF, Kass GEN, Ogin SL, Hughes MP (2005) Parallel measurements of drug actions on erythrocytes by dielectrophoresis, using a three-dimensional electrode design. Nanobiotechnol IEE Proc 152(4):150–154

    Article  CAS  Google Scholar 

  29. 29.

    Pethig R, Jakubek LM, Sanger RH, Heart E, Corson ED, Smith PJS (2005) Electrokinetic measurements of membrane capacitance and conductance for pancreatic beta-cells. IEE Proc Nanobiotechnol 152(6):189–193

    Article  CAS  Google Scholar 

  30. 30.

    Gascoyne PRC, Pethig R, Burt JPH, Becker FF (1993) Membrane changes accompanying the induced differentiation of friend murine erythroleukemia cells studied by dielectrophoresis. Biochim Biophys Acta (BBA)-Biomembranes 1149(1):119–126

    Article  CAS  Google Scholar 

  31. 31.

    Broche LM, Labeed FH, Hughes MP (2005) Extraction of dielectric properties of multiple populations from dielectrophoretic collection spectrum data. Phys Med Biol 50(10):2267–2274

    Article  Google Scholar 

  32. 32.

    Morgan H, Green NG (2003) AC electrokinetics: colloids and nanoparticles, 1st edn. Research Studies, Williston

    Google Scholar 

  33. 33.

    Pethig R, Kell DB (1987) The passive electrical properties of biological systems—their significance in physiology, biophysics and biotechnology. Phys Med Biol 32(8):933–970

    Article  CAS  Google Scholar 

  34. 34.

    Wang X-B, Huang Y, Gascoyne PRC, Becker FF, Hölzel R, Pethig R (1994) Changes in fiend murine erythroleukaemia cell membranes during induced differentiation determined by electrorotation. Biochim Biophys Acta (BBA)-Biomembranes 1193(2):330–344

    Article  CAS  Google Scholar 

  35. 35.

    Ratanachoo K, Gascoyne PRC, Ruchirawat M (2002) Detection of cellular responses to toxicants by dielectrophoresis. Biochim Biophys Acta (BBA)-Biomembranes 1564(2):449–458

    Article  CAS  Google Scholar 

  36. 36.

    Labeed FH, Coley HM, Hughes MP (2006) Differences in the biophysical properties of membrane and cytoplasm of apoptotic cells revealed using dielectrophoresis. Biochim Biophys Acta 1760(6):922–929

    Article  CAS  Google Scholar 

  37. 37.

    Partin AW, Isaacs JT, Treiger B, Coffey DS (1988) Early cell motility changes associated with an increase in metastatic ability in rat prostatic cancer cells transfected with the v-Harvey-ras oncogene. Cancer Res 48(21):6050–6053

    CAS  Google Scholar 

  38. 38.

    Nicolas AFVL, Marc EB, Marc MM (1992) Invasive epithelial cells show more fast plasma membrane movements than related or parental non-invasive cells. Cytometry 13(1):9–14

    Article  Google Scholar 

  39. 39.

    Jiang WG (1995) Focus on science—membrane ruffling of cancer cells: a parameter of tumour cell motility and invasion. Eur J Surg Oncol 21(3):307–309

    Article  CAS  Google Scholar 

  40. 40.

    Becker FF, Wang XB, Huang Y, Pethig R, Vykoukal J, Gascoyne PRC (1994) The removal of human leukaemia cells from blood using interdigitated microelectrodes. Journal of Physics D: Applied Physics 27(12):2659–2662

    Article  CAS  Google Scholar 

  41. 41.

    Becker FF, Wang X, Huang Y, Pethig R, Vykoukal J, Gascoyne PRC (1995) Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci U S A 92:860–864

    Article  CAS  Google Scholar 

  42. 42.

    Bhoopathi V, Kabani S, Mascarenhas AK (2009) Low positive predictive value of the oral brush biopsy in detecting dysplastic oral lesions. Cancer 115(5):1036–1040

    Article  Google Scholar 

  43. 43.

    Epstein JB, Silverman S Jr, Epstein JD, Lonky SA, Bride MA (2008) Analysis of oral lesion biopsies identified and evaluated by visual examination, chemiluminescence and toluidine blue. Oral Oncol 44(6):538–544

    Article  CAS  Google Scholar 

Download references


The authors wish to thank the Engineering and Physical Sciences Research Council for a scholarship for HJM. In addition, the authors would like to thank Dr. Kai Hoettges for his work on the DEP-microwell and associated software. This work is dedicated to the memory of Mr. Brian Conroy, who was instrumental in initiating this research.

Conflict of interest

The electrode design used is subject to a patent application by MPH.

Author information



Corresponding author

Correspondence to M. P. Lewis.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mulhall, H.J., Labeed, F.H., Kazmi, B. et al. Cancer, pre-cancer and normal oral cells distinguished by dielectrophoresis. Anal Bioanal Chem 401, 2455–2463 (2011).

Download citation


  • OSCC
  • Oral cancer
  • Dielectrophoresis
  • DEP
  • Diagnostics
  • Detection