Analytical and Bioanalytical Chemistry

, Volume 402, Issue 2, pp 625–645 | Cite as

Functional proteomics: application of mass spectrometry to the study of enzymology in complex mixtures



This review covers recent developments in mass spectrometry-based applications dealing with functional proteomics with special emphasis on enzymology. The introduction of mass spectrometry into this research field has led to an enormous increase in knowledge in recent years. A major challenge is the identification of “biologically active substances” in complex mixtures. These biologically active substances are, on the one hand, potential regulators of enzymes. Elucidation of function and identity of those regulators may be accomplished by different strategies, which are discussed in this review. The most promising approach thereby seems to be the one-step procedure, because it enables identification of the functionality and identity of biologically active substances in parallel and thus avoids misinterpretation. On the other hand, besides the detection of regulators, the identification of endogenous substrates for known enzymes is an emerging research field, but in this case studies are quite rare. Moreover, the term biologically active substances may also encompass proteins with diverse biological functions. Elucidation of the functionality of those—so far unknown—proteins in complex mixtures is another branch of functional proteomics and those investigations will also be discussed in this review.


Mass spectrometric monitoring of enzymatic reactions


Protein function mass spectrometry inhibitor screening continuous-flow assays 


  1. 1.
  2. 2.
  3. 3.
    Lockhart DJ, Winzeler EA (2000) Genomics, gene expression and DNA arrays. Nature 405(6788):827–836CrossRefGoogle Scholar
  4. 4.
    Albertson DG, Pinkel D (2003) Genomic microarrays in human genetic disease and cancer. Hum Mol Genet 12:R145–R152CrossRefGoogle Scholar
  5. 5.
    Bartel DP (2004) MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRefGoogle Scholar
  6. 6.
    Storck T, von Brevern MC, Behrens CK, Scheel J, Bach A (2002) Transcriptomics in predictive toxicology. Curr Opin Drug Di De 5(1):90–97Google Scholar
  7. 7.
    Hegde PS, White IR, Debouck C (2003) Interplay of transcriptomics and proteomics. Curr Opin Biotech 14(6):647–651CrossRefGoogle Scholar
  8. 8.
    Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70:437–473CrossRefGoogle Scholar
  9. 9.
    Zhu H, Bilgin M, Snyder M (2003) Proteomics. Annu Rev Biochem 72:783–812CrossRefGoogle Scholar
  10. 10.
    Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genom 2(3):155–168CrossRefGoogle Scholar
  11. 11.
    Papin JA, Price ND, Wiback SJ, Fell DA, Palsson BO (2003) Metabolic pathways in the post-genome era. Trends Biochem Sci 28(5):250–258CrossRefGoogle Scholar
  12. 12.
    Oldiges M, Lutz S, Pflug S, Schroer K, Stein N, Wiendahl C (2007) Metabolomics: current state and evolving methodologies and tools. Appl Microbiol Biot 76(3):495–511CrossRefGoogle Scholar
  13. 13.
    Tyers M, Mann M (2003) From genomics to proteomics. Nature 422(6928):193–197CrossRefGoogle Scholar
  14. 14.
    Al-Shahrour F, Minguez P, Vaquerizas JM, Conde L, Dopazo J (2005) BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments. Nucleic Acids Res 33:W460–W464CrossRefGoogle Scholar
  15. 15.
    Jimenez MS, Gomez MT, Rodriguez L, Martinez L, Castillo JR (2009) Some pitfalls in PAGE–LA–ICP–MS for quantitative elemental speciation of dissolved organic matter and metalomics. Anal Bioanal Chem 393(2):699–707CrossRefGoogle Scholar
  16. 16.
    Shi W, Chance MR (2008) Metallomics and metalloproteomics. Cell Mol Life Sci 65(19):3040–3048CrossRefGoogle Scholar
  17. 17.
    Muller M, Kersten S (2003) Nutrigenomics: goals and strategies. Nat Rev Genet 4(4):315–322CrossRefGoogle Scholar
  18. 18.
    Corthesy-Theulaz I, den Dunnen JT, Ferre P, Geurts JMW, Muller M, van Belzen N, van Ommen B (2005) Nutrigenomics: The impact of biomics technology on nutrition research. Ann Nutr Metab 49(6):355–365CrossRefGoogle Scholar
  19. 19.
    Rosell R, Monzo M, O'Brate A, Taron M (2002) Translational oncogenomics: toward rational therapeutic decision-making. Curr Opin Oncol 14(2):171–179CrossRefGoogle Scholar
  20. 20.
    Strausberg RL, Simpson AJG, Old LJ, Riggins GJ (2004) Oncogenomics and the development of new cancer therapies. Nature 429(6990):469–474CrossRefGoogle Scholar
  21. 21.
    Monteoliva L, Albar JP (2004) Differential proteomics: an overview of gel and non-gel based approaches. Brief Funct Genomic Proteomic 3(3):220–239CrossRefGoogle Scholar
  22. 22.
    Mavroudi S, Papadimitriou S, Kossida S, Likothanassis SD, Vlahou A (2007) Computational methods and algorithms for mass-spectrometry based differential proteomics. Curr Proteomics 4(4):223–234CrossRefGoogle Scholar
  23. 23.
    Sali A, Glaeser R, Earnest T, Baumeister W (2003) From words to literature in structural proteomics. Nature 422(6928):216–225CrossRefGoogle Scholar
  24. 24.
    Yokoyama S (2003) Protein expression systems for structural genomics and proteomics. Curr Opin Chem Biol 7(1):39–43CrossRefGoogle Scholar
  25. 25.
    Naylor S, Kumar R (2003) Emerging role of mass spectrometry in structural and functional proteomics. Adv Protein Chem 65:217–248CrossRefGoogle Scholar
  26. 26.
    Godovac-Zimmermann J, Brown LR (2001) Perspectives for mass spectrometry and functional proteomics. Mass Spectrom Rev 20(1):1–57CrossRefGoogle Scholar
  27. 27.
    Yanagida M (2002) Functional proteomics; current achievements. J Chromatogr B 771(1–2):89–106CrossRefGoogle Scholar
  28. 28.
    Graves PR, Haystead TAJ (2002) Molecular biologist's guide to proteomics. Microbiol Mol Biol Rev 66(1):39–63CrossRefGoogle Scholar
  29. 29.
    Hunter TC, Andon NL, Koller A, Yates JR, Haynes PA (2002) The functional proteomics toolbox: methods and applications. J Chromatogr B 782(1–2):165–181CrossRefGoogle Scholar
  30. 30.
    Hubbard MJ (2002) Functional proteomics: The goalposts are moving. Proteomics 2(9):1069–1078CrossRefGoogle Scholar
  31. 31.
    Monti M, Orru S, Pagnozzi D, Pucci P (2005) Functional proteomics. Clin Chim Acta 357(2):140–150CrossRefGoogle Scholar
  32. 32.
    Kocher T, Superti-Furga G (2007) Mass spectrometry-based functional proteomics: from molecular machines to protein networks. Nat Methods 4(10):807–815CrossRefGoogle Scholar
  33. 33.
    Adam GC, Sorensen EJ, Cravatt BF (2002) Chemical strategies for functional proteomics. Mol Cell Proteomics 1(10):781–790CrossRefGoogle Scholar
  34. 34.
    Hemelaar J, Galardy PJ, Borodovsky A, Kessler BA, Ploegh HL, Ovaa H (2004) Chemistry-based functional proteomics: Mechanism-based activity-profiling tools for ubiquitin and ubiquitin-like specific proteases. J Proteome Res 3(2):268–276CrossRefGoogle Scholar
  35. 35.
    Speers AE, Cravatt BF (2004) Chemical strategies for activity-based proteomics. ChemBioChem 5(1):41–47CrossRefGoogle Scholar
  36. 36.
    Schmidinger H, Hermetter A, Birner-Gruenberger R (2006) Activity-based proteomics: enzymatic activity profiling in complex proteomes. Amino Acids 30(4):333–350CrossRefGoogle Scholar
  37. 37.
    Sadaghiani AM, Verhelst SHL, Bogyo M (2007) Tagging and detection strategies for activity-based proteomics. Curr Opin Chem Biol 11(1):20–28CrossRefGoogle Scholar
  38. 38.
    Johnson SA, Hunter T (2005) Kinomics: methods for deciphering the kinome. Nat Methods 2(1):17–25CrossRefGoogle Scholar
  39. 39.
    Lawrence DS (2001) Functional proteomics: large-scale analysis of protein kinase activity. Genome Biol 2 (2):reviews1007Google Scholar
  40. 40.
    Collura V, Boissy G (2007) From protein–protein complexes to interactomics. Subcell Biochem 43:135–183CrossRefGoogle Scholar
  41. 41.
    Kiemer L, Cesareni G (2007) Comparative interactomics: comparing apples and pears? Trends Biotechnol 25(10):448–454CrossRefGoogle Scholar
  42. 42.
    Bisswanger H (2007) Practical Enzymology. WILEY–VCH, WeinheimGoogle Scholar
  43. 43.
    Letzel T, Sahmel-Schneider E, Skriver K, Ohnuma T, Fukamizo T (2011) Chitinase-catalyzed hydrolysis of 4-nitrophenyl penta-N-acetyl-[beta]-chitopentaoside as determined by real-time ESIMS: The 4-nitrophenyl moiety of the substrate interacts with the enzyme binding site. Carbohyd Res 346(6):863–866CrossRefGoogle Scholar
  44. 44.
    Letzel T (ed) (2011) Protein and Peptide Analysis by LC–MS: Experimental Strategies. Royal Society of Chemistry, Cambridge, UK. doi:10.1039/9781849733144
  45. 45.
    Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19(11):1853–1861CrossRefGoogle Scholar
  46. 46.
    Celis JE, Ostergaard M, Jensen NA, Gromova I, Rasmussen HH, Gromov P (1998) Human and mouse proteomic databases: novel resources in the protein universe. FEBS Lett 430(1–2):64–72CrossRefGoogle Scholar
  47. 47.
    Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207CrossRefGoogle Scholar
  48. 48.
    Cravatt BF, Simon GM, Yates Iii JR (2007) The biological impact of mass-spectrometry-based proteomics. Nature 450(7172):991–1000CrossRefGoogle Scholar
  49. 49.
    Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389(4):1017–1031CrossRefGoogle Scholar
  50. 50.
    Reinders J, Sickmann A (2007) Modificomics: Posttranslational modifications beyond protein phosphorylation and glycosylation. Biomol Eng 24(2):169–177CrossRefGoogle Scholar
  51. 51.
    Sharon M, Robinson CV (2007) The role of mass Spectrometry in structure elucidation of dynamic protein complexes. Annu Rev Biochem 76:167–193CrossRefGoogle Scholar
  52. 52.
    Benesch JL, Robinson CV (2006) Mass spectrometry of macromolecular assemblies: preservation and dissociation. Curr Opin Struc Biol 16(2):245–251CrossRefGoogle Scholar
  53. 53.
    Letzel T (2008) Real-time mass spectrometry in enzymology. Anal Bioanal Chem 390(1):257–261CrossRefGoogle Scholar
  54. 54.
    Greis KD (2007) Mass spectrometry for enzyme assays and inhibitor screening: An emerging application in pharmaceutical research. Mass Spectrom Rev 26(3):324–339CrossRefGoogle Scholar
  55. 55.
    de Boer AR, Lingeman H, Niessen WMA, Irth H (2007) Mass spectrometry-based biochemical assays for enzyme inhibitor screening. Trends Anal Chem 26(9):867–883CrossRefGoogle Scholar
  56. 56.
    Geoghegan KF, Kelly MA (2005) Biochemical applications of mass spectrometry in pharmaceutical drug discovery. Mass Spectrom Rev 24(3):347–366CrossRefGoogle Scholar
  57. 57.
    Liesener A, Karst U (2005) Monitoring enzymatic conversions by mass spectrometry: a critical review. Anal Bioanal Chem 382(7):1451–1464CrossRefGoogle Scholar
  58. 58.
    Schluter H, Hildebrand D, Gallin C, Schulz A, Thiemann J, Trusch M (2008) Mass spectrometry for monitoring protease reactions. Anal Bioanal Chem 392(5):783–792CrossRefGoogle Scholar
  59. 59.
    Shi SY, Zhou HH, Zhang YP, Jiang XY, Chen XQ, Huang KL (2009) Coupling HPLC to on-line, post-column (bio)chemical assays for high-resolution screening of bioactive compounds from complex mixtures. Trends Anal Chem 28(7):865–877CrossRefGoogle Scholar
  60. 60.
    van Beek TA, Tetala KKR, Koleva II, Dapkevicius A, Exarchou V, Jeurissen SMF, Claassen FW, van der Klift EJC (2009) Recent developments in the rapid analysis of plants and tracking their bioactive constituents. Phytochem Rev 8(2):387–399CrossRefGoogle Scholar
  61. 61.
    Zechel DL, Konermann L, Withers SG, Douglas DJ (1998) Pre-steady state kinetic analysis of an enzymatic reaction monitored by time-resolved electrospray ionization mass spectrometry. Biochemistry 37(21):7664–7669CrossRefGoogle Scholar
  62. 62.
    Ge X, Sirich TL, Beyer MK, Desaire H, Leary JA (2001) A strategy for the determination of enzyme kinetics using electrospray ionization with an ion trap mass spectrometer. Anal Chem 73(21):5078–5082CrossRefGoogle Scholar
  63. 63.
    Wilson DJ, Konermann L (2004) Mechanistic studies on enzymatic reactions by electrospray ionization MS using a capillary mixer with adjustable reaction chamber volume for time-resolved measurements. Anal Chem 76(9):2537–2543CrossRefGoogle Scholar
  64. 64.
    Ganem B, Li YT, Henion JD (1991) Observation of Noncovalent Enzyme Substrate and Enzyme Product Complexes by Ion-Spray Mass-Spectrometry. J Am Chem Soc 113(20):7818–7819CrossRefGoogle Scholar
  65. 65.
    Clark SM, Konermann L (2004) Screening for noncovalent ligand–receptor interactions by electrospray ionization mass spectrometry-based diffusion measurements. Anal Chem 76(5):1257–1263CrossRefGoogle Scholar
  66. 66.
    Dennhart N, Letzel T (2006) Mass spectrometric real-time monitoring of enzymatic glycosidic hydrolysis, enzymatic inhibition and enzyme complexes. Anal Bioanal Chem 386(3):689–698CrossRefGoogle Scholar
  67. 67.
    Dennhart N, Fukamizo T, Brzezinski R, Lacombe-Harvey ME, Letzel T (2008) Oligosaccharide hydrolysis by chitosanase enzymes monitored by real-time electrospray ionization-mass spectrometry. J Biotechnol 134(3–4):253–260CrossRefGoogle Scholar
  68. 68.
    Dennhart N, Weigang LMM, Fujiwara M, Fukamizo T, Skriver K, Letzel T (2009) 26 kDa endochitinase from barley seeds: Real-time monitoring of the enzymatic reaction and substrate binding experiments using electrospray ionization mass spectrometry. J Biotechnol 143(4):274–283CrossRefGoogle Scholar
  69. 69.
    Taira T, Fujiwara M, Dennhart N, Hayashi H, Onaga S, Ohnuma T, Letzel T, Sakuda S, Fukamizo T (2010) Transglycosylation reaction catalyzed by a class V chitinase from cycad, Cycas revoluta: A study involving site-directed mutagenesis, HPLC, and real-time ESI–MS. Biochim Biophys Acta 1804(4):668–675Google Scholar
  70. 70.
    Scheerle RK, Graßmann J, Letzel T (2011) Enzymatic conversion continuously monitored with a robotic nanoESI–MS tool: experimental status. Anal Meth 3(4):822–830CrossRefGoogle Scholar
  71. 71.
    Imoto T, Johnson L, North A, Phillips D, Rupley J (eds) (1972) Vertebrate Lysozymes, vol 7. The Enzymes. Academic Press, NYGoogle Scholar
  72. 72.
    Lee ED, Muck W, Henion JD, Covey TR (1989) Real-Time Reaction Monitoring by Continuous-Introduction Ion-Spray Tandem Mass-Spectrometry. J Am Chem Soc 111(13):4600–4604CrossRefGoogle Scholar
  73. 73.
    Northrop DB, Simpson FB (1997) Beyond enzyme kinetics: direct determination of mechanisms by stopped-flow mass spectrometry. Bioorg Med Chem 5(4):641–644CrossRefGoogle Scholar
  74. 74.
    Li ZL, Song F, Zhuang ZH, Dunaway-Mariano D, Anderson KS (2009) Monitoring enzyme catalysis in the multimeric state: Direct observation of Arthrobacter 4-hydroxybenzoyl-coenzyme A thioesterase catalytic complexes using time-resolved electrospray ionization mass spectrometry. Anal Biochem 394(2):209–216CrossRefGoogle Scholar
  75. 75.
    Tagore R, Thomas HR, Homan EA, Munawar A, Saghatelian A (2008) A Global Metabolite Profiling Approach to Identify Protein–Metabolite Interactions. J Am Chem Soc 130 (43):14111–+Google Scholar
  76. 76.
    Hannewald P, Maunit B, Muller JF (2008) Screening of DHFR-binding drugs by MALDI–TOFMS. Anal Bioanal Chem 392(7–8):1335–1344CrossRefGoogle Scholar
  77. 77.
    Beverly MB, West P, Julian RK (2002) Evaluation of a micro volume pulsed ultrafiltration cell for screening ligands in non-covalent complexes. Comb Chem High Throughput Screen 5(1):65–73Google Scholar
  78. 78.
    Nikolic D, Habibi-Goudarzi S, Corley DG, Gafner S, Pezzuto JM, van Breemen RB (2000) Evaluation of cyclooxygenase-2 inhibitors using pulsed ultrafiltration mass spectrometry. Anal Chem 72(16):3853–3859CrossRefGoogle Scholar
  79. 79.
    Vu H, Quinn RJ (2008) Direct screening of natural product extracts using mass spectrometry. J Biomol Screen 13(4):265–275CrossRefGoogle Scholar
  80. 80.
    Calleri E, Temporini C, Caccialanza G, Massolini G (2009) Target-Based Drug Discovery: the Emerging Success of Frontal Affinity Chromatography Coupled to Mass Spectrometry. ChemMedChem 4(6):905–916CrossRefGoogle Scholar
  81. 81.
    Unger M, Frank A (2004) Simultaneous determination of the inhibitory potency of herbal extracts on the activity of six major cytochrome P450 enzymes using liquid chromatography mass spectrometry and automated online extraction. Rapid Commun Mass Spectrom 18(19):2273–2281CrossRefGoogle Scholar
  82. 82.
    Frank A, Unger M (2006) Analysis of frankincense from various Boswellia species with inhibitory activity on human drug metabolising cytochrome P450 enzymes using liquid chromatography mass spectrometry after automated on-line extraction. J Chromatogr A 1112(1–2):255–262CrossRefGoogle Scholar
  83. 83.
    Kim H, Kim KB, Ku HY, Park SJ, Choi H, Moon JK, Park BS, Kim JH, Yea SS, Lee CH, Lee HS, Shin JG, Liu KH (2008) Identification and characterization of potent CYP2B6 inhibitors in woohwangcheongsimwon suspension, an herbal preparation used in the treatment and prevention of apoplexy in Korea and China. Drug Metab Dispos 36(6):1010–1015CrossRefGoogle Scholar
  84. 84.
    Li HL, Song FR, Xing JP, Tsao R, Liu ZQ, Liu SY (2009) Screening and Structural Characterization of alpha-Glucosidase Inhibitors from Hawthorn Leaf Flavonoids Extract by Ultrafiltration LC–DAD–MSn and SORI–CID FTICR MS. J Am Soc Mass Spectrom 20(8):1496–1503CrossRefGoogle Scholar
  85. 85.
    Xu Z, Yao SJ, Wei YL, Zhou J, Zhang L, Wang CH, Guo YL (2008) Monitoring Enzyme Reaction and Screening of Inhibitors of Acetylcholinesterase by Quantitative Matrix-Assisted Laser Desorption/Ionization Fourier Transform Mass Spectrometry. J Am Soc Mass Spectrom 19(12):1849–1855CrossRefGoogle Scholar
  86. 86.
    Hu FL, Zhang HY, Lin HQ, Deng CH, Zhang XM (2008) Enzyme inhibitor screening by electrospray mass spectrometry with immobilized enzyme on magnetic silica microspheres. J Am Soc Mass Spectrom 19(6):865–873CrossRefGoogle Scholar
  87. 87.
    Halim VA, Muck A, Hartl M, Ibanez AJ, Giri A, Erfurth F, Baldwin IT, Svatos A (2009) A dual fluorescent/MALDI chip platform for analyzing enzymatic activity and for protein profiling. Proteomics 9(1):171–181CrossRefGoogle Scholar
  88. 88.
    Borch J, Roepstorff P (2004) Screening for enzyme inhibitors by surface plasmon resonance combined with mass spectrometry. Anal Chem 76(18):5243–5248CrossRefGoogle Scholar
  89. 89.
    de Boer AR, Letzel T, van Elswijk DA, Lingeman H, Niessen WMA, Irth H (2004) On-line coupling of high-performance liquid chromatography to a continuous-flow enzyme assay based on electrospray ionization mass spectrometry. Anal Chem 76(11):3155–3161CrossRefGoogle Scholar
  90. 90.
    de Boer AR, Alcaide-Hidalgo JM, Krabbe JG, Kolkman J, Boas CNV, Niessen WMA, Lingeman H, Irth H (2005) High-temperature liquid chromatography coupled on-line to a continuous-flow biochemical screening assay with electrospray ionization mass spectrometric detection. Anal Chem 77(24):7894–7900CrossRefGoogle Scholar
  91. 91.
    de Boer AR, Bruyneel B, Krabbe JG, Lingeman H, Niessen WMA, Irth H (2005) A microfluidic-based enzymatic assay for bioactivity screening combined with capillary liquid chromatography and mass spectrometry. Lab Chip 5(11):1286–1292CrossRefGoogle Scholar
  92. 92.
    de Jong CF, Derks RJE, Bruyneel B, Niessen W, Irth H (2006) High-performance liquid chromatography–mass spectrometry-based acetylcholinesterase assay for the screening of inhibitors in natural extracts. J Chromatogr A 1112(1–2):303–310Google Scholar
  93. 93.
    Hodgson RJ, Besanger TR, Brook MA, Brennan JD (2005) Inhibitor screening using immobilized enzyme reactor chromatography/mass spectrometry. Anal Chem 77(23):7512–7519CrossRefGoogle Scholar
  94. 94.
    Partserniak I, Werstuck G, Capretta A, Brennan JD (2008) An ESl–MS/MS method for screening of small-molecule mixtures against glycogen synthase kinase-3 beta (GSK-3 beta). ChemBioChem 9(7):1065–1073CrossRefGoogle Scholar
  95. 95.
    Schluter H, Rykl J, Thiemann J, Kurzawski S, Gobom J, Tepel M, Zidek W, Linscheid M (2007) Mass spectrometry-assisted protease substrate screening. Anal Chem 79(3):1251–1255CrossRefGoogle Scholar
  96. 96.
    Saghatelian A, Trauger SA, Want EJ, Hawkins EG, Siuzdak G, Cravatt BF (2004) Assignment of endogenous substrates to enzymes by global metabolite profiling. Biochemistry 43(45):14332–14339CrossRefGoogle Scholar
  97. 97.
    Tang ZM, Martin MV, Guengerich FP (2009) Elucidation of Functions of Human Cytochrome P450 Enzymes: Identification of Endogenous Substrates in Tissue Extracts Using Metabolomic and Isotopic Labeling Approaches. Anal Chem 81(8):3071–3078CrossRefGoogle Scholar
  98. 98.
    Jonker N, Kool J, Irth H, Niessen WM (2010) Recent developments in protein–ligand affinity mass spectrometry. Anal Bioanal Chem. doi:10.1007/s00216-010-4350-z
  99. 99.
    Johnson BM, Nikolic D, van Breemen RB (2002) Applications of pulsed ultrafiltration-mass spectrometry. Mass Spectrom Rev 21(2):76–86CrossRefGoogle Scholar
  100. 100.
    Shin YG, van Breemen RB (2001) Analysis and screening of combinatorial libraries using mass spectrometry. Biopharm Drug Dispos 22(7–8):353–372CrossRefGoogle Scholar
  101. 101.
    Wanner K, Hoefner G (2007) Mass spectrometry in medicinal chemistry. Wiley–VCH, WeinheimGoogle Scholar
  102. 102.
    Jorgensen TJD, Roepstorff P, Heck AJR (1998) Direct determination of solution binding constants for noncovalent complexes between bacterial cell wall peptide analogues and vancomycin group antibiotics by electrospray ionization mass spectrometry. Anal Chem 70(20):4427–4432CrossRefGoogle Scholar
  103. 103.
    Schriemer DC, Bundle DR, Li L, Hindsgaul O (1998) Micro-scale frontal affinity chromatography with mass spectrometric detection: A new method for the screening of compound libraries. Angew Chem-Int Edit 37(24):3383–3387CrossRefGoogle Scholar
  104. 104.
    Zhang B, Palcic MM, Schriemer DC, Alvarez-Manilla G, Pierce M, Hindsgaul O (2001) Frontal affinity chromatography coupled to mass spectrometry for screening mixtures of enzyme inhibitors. Anal Biochem 299(2):173–182CrossRefGoogle Scholar
  105. 105.
    Deng GJ, Sanyal G (2006) Applications of mass spectrometry in early stages of target based drug discovery. J Pharm Biomed Anal 40(3):528–538CrossRefGoogle Scholar
  106. 106.
    Rabe KS, Gandubert VJ, Spengler M, Erkelenz M, Niemeyer CM (2008) Engineering and assaying of cytochrome P450 biocatalysts. Anal Bioanal Chem 392(6):1059–1073CrossRefGoogle Scholar
  107. 107.
    Lahoz A, Donato MT, Castell JV, Gomez-Lechon MJ (2008) Strategies to in vitro assessment of major human CYP enzyme activities by using liquid chromatography tandem mass spectrometry. Curr Drug Metab 9(1):12–19CrossRefGoogle Scholar
  108. 108.
    Walsky RL, Boldt SE (2008) In Vitro Cytochrome P450 Inhibition and Induction. Curr Drug Metab 9(9):928–939CrossRefGoogle Scholar
  109. 109.
    Foti RS, Wienkers LC, Wahlstrom JL (2010) Application of Cytochrome P450 Drug Interaction Screening in Drug Discovery. Comb Chem High T Scr 13(2):145–158Google Scholar
  110. 110.
    Bassil N, Grossberg GT (2009) Novel Regimens and Delivery Systems in the Pharmacological Treatment of Alzheimer's Disease. CNS Drugs 23(4):293–307CrossRefGoogle Scholar
  111. 111.
    Munoz-Torrero D (2008) Acetylcholinesterase Inhibitors as Disease-Modifying Therapies for Alzheimer's Disease. Curr Med Chem 15(24):2433–2455CrossRefGoogle Scholar
  112. 112.
    Scatena R, Martorana GE, Bottoni P, Botta G, Pastore P, Giardina B (2007) An update on pharmacological approaches to neurodegenerative diseases. Expert Opin Investig Drugs 16(1):59–72CrossRefGoogle Scholar
  113. 113.
    Houghton PJ, Howes MJ (2005) Natural products and derivatives affecting neurotransmission relevant to Alzheimer's and Parkinson's disease. Neurosignals 14(1–2):6–22. doi:10.1159/000085382 CrossRefGoogle Scholar
  114. 114.
    Dickinson L, Khoo S, Back D (2010) Pharmacokinetics and drug–drug interactions of antiretrovirals: An update. Antiviral Res 85(1):176–189CrossRefGoogle Scholar
  115. 115.
    Steuber H, Hilgenfeld R (2010) Recent Advances in Targeting Viral Proteases for the Discovery of Novel Antivirals. Curr Top Med Chem 10(3):323–345CrossRefGoogle Scholar
  116. 116.
    Wensing AMJ, van Maarseveen NM, Nijhuis M (2010) Fifteen years of HIV Protease Inhibitors: raising the barrier to resistance. Antiviral Res 85(1):59–74CrossRefGoogle Scholar
  117. 117.
    Kool J, Giera M, Irth H, Niessen WM (2011) Advances in mass spectrometry-based post-column bioaffinity profiling of mixtures. Anal Bioanal Chem 399(8):2655–2668. doi:10.1007/s00216-010-4406-0 CrossRefGoogle Scholar
  118. 118.
    Besanger TR, Hodgson RJ, Green JRA, Brennan JD (2006) Immobilized enzyme reactor chromatography: Optimization of protein retention and enzyme activity in monolithic silica stationary phases. Anal Chim Acta 564(1):106–115. doi:10.1016/j.aca.2005.12.066 CrossRefGoogle Scholar
  119. 119.
    Lebert JM, Forsberg EM, Brennan JD (2008) Solid-phase assays for small molecule screening using sol–gel entrapped proteins. Biochem Cell Biol 86(2):100–110. doi:10.1139/o08-010 CrossRefGoogle Scholar
  120. 120.
    Jankowski J, Stephan N, Knobloch M, Fischer S, Schmaltz D, Zidek W, Schluter H (2001) Mass-spectrometry-linked screening of protein fractions for enzymatic activities - A tool for functional genomics. Anal Biochem 290(2):324–329CrossRefGoogle Scholar
  121. 121.
    Schluter H, Jankowski J, Rykl J, Thiemann J, Belgardt S, Zidek W, Wittmann B, Pohl T (2003) Detection of protease activities with the mass-spectrometry-assisted enzyme-screening (MES) system. Anal Bioanal Chem 377(7–8):1102–1107CrossRefGoogle Scholar
  122. 122.
    Basile F, Ferrer I, Furlong ET, Voorhees KJ (2002) Simultaneous multiple substrate tag detection with ESI–ion trap MS for in vivo bacterial enzyme activity profiling. Anal Chem 74(16):4290–4293CrossRefGoogle Scholar
  123. 123.
    Yu Y, Mizanur RM, Pohl NL (2008) Glycosidase activity profiling for bacterial identification by a chemical proteomics approach. Biocatal Biotransfor 26(1–2):25–31. doi:10.1080/10242420701791151 CrossRefGoogle Scholar
  124. 124.
    Gruninger-Leitch F, Berndt P, Langen H, Nelboeck P, Dobeli H (2000) Identification of beta-secretase-like activity using a mass spectrometry-based assay system. Nat Biotechnol 18(1):66–70CrossRefGoogle Scholar
  125. 125.
    Liesener A, Perchuc AM, Schoni R, Wilmer M, Karst U (2005) Screening for proteolytic activities in snake venom by means of a multiplexing electrospray ionization mass spectrometry assay scheme. Rapid Commun Mass Spectrom 19(20):2923–2928CrossRefGoogle Scholar
  126. 126.
    Schebb NH, Vielhaber T, Jousset A, Karst U (2009) Development of a liquid chromatography-based screening methodology for proteolytic enzyme activity. J Chromatogr A 1216(20):4407–4415CrossRefGoogle Scholar
  127. 127.
    Schebb NH, Falck D, Faber H, Hein EM, Karst U, Hayen H (2009) Fast method for monitoring phospholipase A(2) activity by liquid chromatography–electrospray ionization mass spectrometry. J Chromatogr A 1216(27):5249–5255CrossRefGoogle Scholar
  128. 128.
    Saito N, Robert M, Kitamura S, Baran R, Soga T, Mori H, Nishioka T, Tomita M (2006) Metabolomics approach for enzyme discovery. J Proteome Res 5(8):1979–1987CrossRefGoogle Scholar
  129. 129.
    Gerber SA, Scott CR, Turecek F, Gelb MH (1999) Analysis of rates of multiple enzymes in cell lysates by electrospray ionization mass spectrometry. J Am Chem Soc 121(5):1102–1103CrossRefGoogle Scholar
  130. 130.
    Gerber SA, Scott CR, Turecek F, Gelb MH (2001) Direct profiling of multiple enzyme activities in human cell lysates by affinity chromatography/electrospray ionization mass spectrometry: Application to clinical enzymology. Anal Chem 73(8):1651–1657CrossRefGoogle Scholar
  131. 131.
    Zhou XF, Turecek F, Scott CR, Gelb MH (2001) Quantification of cellular acid sphingomyelinase and galactocerebroside beta-galactosidase activities by electrospray ionization mass spectrometry. Clin Chem 47(5):874–881Google Scholar
  132. 132.
    Ogata Y, Scampavia L, Ruzicka J, Scott CR, Gelb MH, Turecek F (2002) Automated affinity capture-release of biotin-containing conjugates using a lab-on-valve apparatus coupled to UV/visible and electrospray ionization mass Spectrometry. Anal Chem 74(18):4702–4708CrossRefGoogle Scholar
  133. 133.
    Li YJ, Ogata Y, Freeze HH, Scott CR, Turecek FE, Gelb MH (2003) Affinity capture and elution/electrospray ionization mass spectrometry assay of phosphomannomutase and phosphomannose isomerase for the multiplex analysis of congenital disorders of glycosylation types Ia and Ib. Anal Chem 75(1):42–48CrossRefGoogle Scholar
  134. 134.
    Li YJ, Brockmann K, Turecek F, Scott CR, Gelb MH (2004) Tandem mass spectrometry for the direct assay of enzymes in dried blood spots: Application to newborn screening for Krabbe disease. Clin Chem 50(3):638–640CrossRefGoogle Scholar
  135. 135.
    Khaliq T, Sadilek M, Scott CR, Turecek F, Gelb MH (2011) Tandem Mass Spectrometry for the Direct Assay of Lysosomal Enzymes in Dried Blood Spots: Application to Screening Newborns for Mucopolysaccharidosis IVA. Clin Chem 57(1):128–131CrossRefGoogle Scholar
  136. 136.
    Duffey TA, Sadilek M, Scott CR, Turecek F, Gelb MH (2010) Tandem Mass Spectrometry for the Direct Assay of Lysosomal Enzymes in Dried Blood Spots: Application to Screening Newborns for Mucopolysaccharidosis VI (Maroteaux–Lamy Syndrome). Anal Chem 82(22):9587–9591CrossRefGoogle Scholar
  137. 137.
    Wang D, Eadala L, Sadilek M, Chamoles NA, Turecek F, Scott CR, Gelb MH (2005) Tandem mass spectrometric analysis of dried blood spots for screening of mucopolysaccharidosis I in newborns. Clin Chem 51(5):898–900CrossRefGoogle Scholar
  138. 138.
    Li YJ, Scott CR, Chamoles NA, Ghavami A, Pinto BM, Turecek F, Gelb MH (2004) Direct multiplex assay of lysosomal enzymes in dried blood spots for newborn screening. Clin Chem 50(10):1785–1796CrossRefGoogle Scholar
  139. 139.
    Edelbroek PM, van der Heijden J, Stolk LML (2009) Dried Blood Spot Methods in Therapeutic Drug Monitoring: Methods, Assays, and Pitfalls. Ther Drug Monit 31(3):327–336CrossRefGoogle Scholar
  140. 140.
    Villanueva J, Nazarian A, Lawlor K, Yi SS, Robbins RJ, Temps P (2008) A sequence-specific exopeptidase activity test (SSEAT) for "Functional" biomarker discovery. Mol Cell Proteomics 7(3):509–518Google Scholar
  141. 141.
    Findeisen P, Peccerella T, Post S, Wenz F, Neumaier M (2008) Spiking of serum specimens with exogenous reporter peptides for mass spectrometry based protease profiling as diagnostic tool. Rapid Commun Mass Spectrom 22(8):1223–1229CrossRefGoogle Scholar
  142. 142.
    Findeisen P, Post S, Wenz F, Neumaier M (2007) Addition of exogenous reporter peptides to serum samples before mass spectrometry-based protease profiling provides advantages over profiling of endogenous peptides. Clin Chem 53:1864–1866CrossRefGoogle Scholar
  143. 143.
    Hortin GL (2006) The MALDI–TOF mass spectrometric view of the plasma proteome and peptidome. Clin Chem 52(7):1223–1237CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Analytical Research Group, Chair of Chemical-Technical Analysis and Chemical Food TechnologyTechnische Universität MünchenFreising-WeihenstephanGermany
  2. 2.Competence Pool WeihenstephanTechnische Universität MünchenFreising-WeihenstephanGermany

Personalised recommendations