Skip to main content

Characterisation of airborne particles and associated organic components produced from incense burning

Abstract

Airborne particles generated from the burning of incense have been characterized in order to gain an insight into the possible implications for human respiratory health. Physical characterization performed using field-emission scanning electron microscopy showed incense particulate smoke mainly consisted of soot particles with fine and ultrafine fractions in various aggregated forms. A range of organic compounds present in incense smoke have been identified using derivatisation reactions coupled with gas chromatography–mass spectrometry analysis. A total of 19 polar organic compounds were positively identified in the samples, including the biomass burning markers levoglucosan, mannosan and galactosan, as well as a number of aromatic acids and phenols. Formaldehyde was among 12 carbonyl compounds detected and predominantly associated with the gas phase, whereas six different quinones were also identified in the incense particulate smoke. The nano-structured incense soot particles intermixed with organics (e.g. formaldehyde and quinones) could increase the oxidative capacity. When considering the worldwide prevalence of incense burning and resulting high respiratory exposures, the oxygenated organics identified in this study have significant human health implications, especially for susceptible populations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Polichetti G, Cocco S, Spinali A, Trimarco V, Nunziata A (2009) Toxicology 261:1–8

    CAS  Article  Google Scholar 

  2. Spolnik Z, Worobiec A, Injuk J, Neilen D, Schellen H, Van Grieken R (2004) Microchim Acta 145:223–227

    CAS  Article  Google Scholar 

  3. Slezakova K, Pereira MC, Alvim-Ferraz MC (2009) Atmos Environ 43:486–493

    CAS  Article  Google Scholar 

  4. Bérubé K, Balharry D, Sexton K, Koshy L, Jones T (2007) Clin Exp Pharmacol Physiol 34:1044–1050

    Article  Google Scholar 

  5. Bureau KHCEP (2003) Total inventory control of air pollutants and the guidance program for reduction. Kaohsiung City Government, Kao-Hsiong, Taiwan, pp 6–9

    Google Scholar 

  6. USEPA (2001) Candles and incense as potential sources of indoor air pollution: market analysis and literature review. USEPA, Washington, D.C.

    Google Scholar 

  7. WHO (2010) WHO guidelines for indoor air quality: selected pollutants. WHO, Europe

    Google Scholar 

  8. Wang B, Lee SC, Ho KF, Kang YM (2007) Sci Total Environ 377:52–60

    CAS  Article  Google Scholar 

  9. Oliveira C, Pio C, Alves C, Evtyugina M, Santos P, Gonçalves V, Nunes T, Silvestre AJD, Palmgren F, Wåhlin P, Harrad S (2007) Atmos Environ 41:5555–5570

    CAS  Article  Google Scholar 

  10. Lung SC, Kao MC, Hu SC (2003) Indoor Air 13:194–199

    CAS  Article  Google Scholar 

  11. Xia T, Korge P, Weiss JN, Li N, Venkatesen MI, Sioutas C, Nel A (2004) Environ Health Perspect 112:1347–1358

    CAS  Article  Google Scholar 

  12. Tran TC, Marriott PJ (2007) Atmos Environ 41:5756–5768

    CAS  Article  Google Scholar 

  13. Tran TC, Marriott PJ (2008) Atmos Environ 42:7360–7372

    CAS  Article  Google Scholar 

  14. Tsai YI, Wu P-L, Hsu Y-T, Yang C-R (2010) Atmos Environ 44:3708–3718

    CAS  Article  Google Scholar 

  15. Pankow JF (2001) Chem Res Toxicol 14:1465–1481

    CAS  Article  Google Scholar 

  16. Temime B, Healy RM, Wenger JC (2007) Environ Sci Technol 41:6514–6520

    CAS  Article  Google Scholar 

  17. Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V (2005) Part Fibre Toxicol 2:10

    Article  Google Scholar 

  18. Lung SC, Kao MC (2003) J Air Waste Manag Assoc 53:130–135

    Google Scholar 

  19. BéruBé KA, Sexton KJ, Jones TP, Moreno T, Anderson S, Richards RJ (2004) Sci Total Environ 324:41–53

    Article  Google Scholar 

  20. Kourtchev I, Ruuskanen T, Maenhaut W, Kulmala M, Claeys M (2005) Atmos Chem Phys 5:2761–2770

    CAS  Article  Google Scholar 

  21. Chiappini L, Perraudin E, Durand-Jolibois R, Doussin J (2006) Anal Bioanal Chem 386:1749–1759

    CAS  Article  Google Scholar 

  22. Healy RM, Wenger JC, Metzger A, Duplissy J, Kalberer M, Dommen J (2008) Atmos Chem Phys 8:3215–3220

    CAS  Article  Google Scholar 

  23. Cho AK, Di Stefano E, You Y, Rodriguez CE, Schmitz DA, Kumagai Y, Miguel AH, Eiguren-Fernandez A, Kobayashi T, Avol E, Froines JR (2004) Aerosol Sci Technol 38:68–81

    CAS  Article  Google Scholar 

  24. Risom L, MØller P, Loft S (2005) Mutat Res Fund Mol Mech Mutagen 592:119–137

    CAS  Article  Google Scholar 

  25. Donaldson K, Beswick PH, Gilmour PS (1996) Toxicol Lett 88:293–298

    CAS  Article  Google Scholar 

  26. Rouse RL, Murphy G, Boudreaux MJ, Paulsen DB, Penn AL (2008) Am J Respir Cell Mol Biol 39:198–207

    CAS  Article  Google Scholar 

  27. Jordan TB, Seen AJ, Jacobsen GE (2006) Atmos Environ 40:5316–5321

    CAS  Article  Google Scholar 

  28. Chang Y-C, Lee H-W, Tseng H-H (2007) J Aerosol Sci 38:39–51

    CAS  Article  Google Scholar 

  29. Lin JM, Wang LH (1994) Bull Environ Contam Toxicol 53:374–381

    CAS  Google Scholar 

  30. Lombardozzi A, Strano M, Cortese M, Ricciutelli M, Vittori S, Maggi F (2010) Nat Prod Commun 5:1317–1320

    CAS  Google Scholar 

  31. Ruiz-Ramos R, Cebrian ME, Garrido E (2005) Toxicology 209:279–287

    CAS  Article  Google Scholar 

  32. USEPA (2011) Integrated risk information system. Available at http://www.epa.gov/. Accessed 1 March 2011

  33. Saito Y, Nishio K, Yoshida Y, Niki E (2005) Toxicology 210:235–245

    CAS  Article  Google Scholar 

  34. Baigi MG, Brault L, Néguesque A, Beley M, Hilali RE, Gaüzère F, Bagrel D (2008) Toxicol In Vitro 22:1547–1554

    CAS  Article  Google Scholar 

  35. Chuang H-C, Jones T, Lung S-C, Bérubé K (2011) Sci Total Environ (in press)

Download references

Acknowledgment

The authors wish to acknowledge funding from the EC project EUROCHAMP 2 (Contract number 228335) for a research visit to University College Cork, by HC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly BéruBé.

Additional information

Published in the special issue Aerosol Analysis with guest editor Ralf Zimmermann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chuang, HC., Jones, T., Chen, Y. et al. Characterisation of airborne particles and associated organic components produced from incense burning. Anal Bioanal Chem 401, 3095–3102 (2011). https://doi.org/10.1007/s00216-011-5209-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5209-7

Keywords

  • Carbonyl
  • Combustion
  • Incense
  • Joss sticks
  • Polar organic
  • Quinone