Skip to main content
Log in

Combined Raman and IR spectroscopic study on the radical-based modifications of methionine

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Among damages reported to occur on proteins, radical-based changes of methionine (Met) residues are one of the most important convalent post-translational modifications. The combined application of Raman and infrared (IR) spectroscopies for the characterisation of the radical-induced modifications of Met is described here. Gamma-irradiation was used to simulate the endogenous formation of reactive species such as hydrogen atoms (H), hydroxyl radicals (OH) and hydrogen peroxide (H2O2). These spectroscopic techniques coupled to mass experiments are suitable tools in detecting almost all the main radical-induced degradation products of Met that depend on the nature of the reactive species. In particular, Raman spectroscopy is useful in revealing the radical-induced modifications in the sulphur-containing moiety, whereas the IR spectra allow decarboxylation and deamination processes to be detected, as well as the formation of other degradation products. Thus, some band patterns useful for building a library of spectra–structure correlation for radical-based degradation of Met were identified. In particular, the bands due to the formation of methionine sulfoxide, the main oxidation product of Met, have been identified. All together, these results combine to produce a set of spectroscopic markers of the main processes occurring as a consequence of radical stress exposure, which can be used in a spectroscopic protocol for providing a first assessment of Met modifications in more complex systems such as peptides and proteins, and monitoring their impact on protein structure.

The combined use of Raman and IR spectroscopy allows to monitor the formation of the main degradation products of amino acids like methionine after radical stress exposure. In particular, Raman spectra are useful for revealing the occurrence of modifications in sulphur-containing moiety, whereas IR spectroscopy is able to detect decarboxylation and deamination processes, as well as the formation of new products

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Aba:

α-Aminobutyric acid

ESI:

Electron spray ionisation

GC/MS:

Gas chromatography/mass spectrometry

HomoSer:

Homoserine

IR:

Infrared

Met:

Methionine

Met(O):

Methionine sulfoxide

MTPA:

3-(Methylthio)-propionaldeide

MTPNH2 :

3-(Methylthio)-propionamine

References

  1. Vogt W (1995) Free Rad Biol Med 18:93–105

    Article  CAS  Google Scholar 

  2. Stadtman ER, Moskovitz J, Levine RL (2003) Antiox Redox Signal 5:577–582

    Article  CAS  Google Scholar 

  3. Koteliansky VE, Domogatsky SP, Gudkov AT (1978) Eur J Biochem 90:319–323

    Article  CAS  Google Scholar 

  4. Brot N, Weissbach H (1983) Arch Biochem Biophys 223:271–281

    Article  CAS  Google Scholar 

  5. Johnson D, Travis J (1979) J BiolChem 254:4022–4026

    CAS  Google Scholar 

  6. Wang WR, Vlasak J, Li YS, Pristatsky P, Fang YL, Pittman T, Roman J, Wang Y, Prueksaritanont T, Ionescu R (2011) Mol Immunol 48:860–866

    Article  CAS  Google Scholar 

  7. Snijder J, Rose RJ, Raijmakers R, Heck AJR (2010) J Struct Biol 174:187–195

    Article  Google Scholar 

  8. Levine RL, Mosoni L, Berlett BS, Stadtman ER (1996) PNAS 93:15036–15040

    Article  CAS  Google Scholar 

  9. Reddy VY, Desrochers PE, Pizzo SV, Gonias SL, Sahakian JA, Levine RL, Weiss SJ (1994) J Biol Chem 269:4683–4691

    CAS  Google Scholar 

  10. Davies MJ (2005) Biochim Biophys Acta-Proteins and Proteomics 1703:93–109

    Article  CAS  Google Scholar 

  11. Hawkins CL, Davies MJ (2001) Biochim Biophys Acta-Bioenerg 1504:196–219

    Article  CAS  Google Scholar 

  12. Davies MJ, Fu SL, Wang HJ, Dean RT (1999) Free Rad Biol Med 27:1151–1163

    Article  CAS  Google Scholar 

  13. Schoneich C (2005) Biochim Biophys Acta -Protein Proteomics 1703:111–119

    Article  Google Scholar 

  14. Barata-Vallejo S, Ferreri C, Postigo A, Chatgilialoglu C (2010) Res Toxicol 23:258–263

    Article  CAS  Google Scholar 

  15. Hawkins CL, Morgan PE, Davies MJ (2009) Free Rad Biol Med 46:965–988

    Article  CAS  Google Scholar 

  16. Salzano AM, Renzone G, Scaloni A, Torreggiani A, Ferreri C, Chatgilialoglu C (2011) Mol Biosyst 7:889–898

    Article  CAS  Google Scholar 

  17. Ferreri C, Chatgilialoglu C, Torreggiani A, Salzamo AM, Renzone G, Scaloni A (2008) J Proteome Res 7:2007–2015

    Article  CAS  Google Scholar 

  18. Chatgilialoglu C, Ferreri C, Torreggiani A, Salzano AM, Renzone G, Scaloni A (2011) J Proteomics. doi:10.1016/j.jprot.2011.03.012

  19. Spinks JWT, Woods RJ (1990) An introduction to radiation chemistry, 3rd edn. Wiley, New York, p 100

    Google Scholar 

  20. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) J Phys Chem Ref Data 17:513–886

    CAS  Google Scholar 

  21. Ross ABMW, Helman WP, Buxton GV, Huie RE, Neta P (eds) (1998) NDRL-NIST solution kinetic database-version 3. Notre Dame Radiation Laboratory, Notre Dame

  22. Garrison WM (1987) Chem Rev 87:381–398

    Article  CAS  Google Scholar 

  23. Winterbourn CC (1995) Toxicol Lett 82–3:969–974

    Article  Google Scholar 

  24. Steinberg D, Witztum JL (2002) Circulation 106:E195

    Article  Google Scholar 

  25. Piraud M, Vianey-Saban C, Petritis K, Elfakir C, Steghens JP, Morla A, Bouchu D (2003) Rapid Commun Mass Spectrom 17:1297–1311

    Article  CAS  Google Scholar 

  26. Ravi J, Hills AE, Cerasoli E, Rakowska PD, Ryadnov MG (2011) Eur Biophys J 40:339–345

    Article  CAS  Google Scholar 

  27. Lord RC, Yu N-t (1970) J Mol Biol 50:509–524

    Article  CAS  Google Scholar 

  28. Mary MB, Umadevi M, Pandiarajan S, Ramakrishnan V (2004) Spectrochim Acta Part a-Mol Biomol Spectrosc 60:2643–2651

    Article  Google Scholar 

  29. Lima JA, Freire PTC, Melo FEA, Lemos V, Mendes J, Pizani PS (2008) J Raman Spectrosc 39:1356–1363

    Article  CAS  Google Scholar 

  30. Torreggiani A, Tamba M, Ferreri C (2007) Prot Pept Letters 14:716–722

    Article  CAS  Google Scholar 

  31. Torreggiani A, Tamba M, Manco I, Faraone-Mennella MR, Ferreri C, Chatgilialoglu C (2006) Biopolymers 81:39–50

    Article  CAS  Google Scholar 

  32. Torreggiani A, Domenech J, Orihuela R, Ferreri C, Atrian S, Capdevila M, Chatgilialoglu C (2009) Chem Eur J 15:6015–6024

    Article  CAS  Google Scholar 

  33. Ferreri C, Manco I, Faraone-Mennella MR, Torreggiani A, Tamba M, Manara S, Chatgilialoglu C (2006) ChemBioChem 7:1738–1744

    Article  CAS  Google Scholar 

  34. Jurasekova Z, Tinti A, Torreggiani A (2011) Anal Bioanal Chem 400:2921–2931

    Article  CAS  Google Scholar 

  35. Rajkumar BJM, Ramakrishnan V (2001) Spectrochim. Acta, Part A, Mol Biomol Spectrosc 57(2):247–254

    Article  CAS  Google Scholar 

  36. Koleva BB (2007) Vibr Spectrosc 44:30–35

    Article  CAS  Google Scholar 

  37. Grunenberg A, Bougeard D (1987) J Mol Struct 160:27–36

    Article  CAS  Google Scholar 

  38. Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and raman spectroscopy. Academic, New York

    Google Scholar 

Download references

Acknowledgements

The support and sponsorship concerned by CNR-CONICET joint research project 2009–2010 and COST Action CM0603 on “Free Radicals in Chemical Biology (CHEMBIORADICAL)” are kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Torreggiani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torreggiani, A., Barata-Vallejo, S. & Chatgilialoglu, C. Combined Raman and IR spectroscopic study on the radical-based modifications of methionine. Anal Bioanal Chem 401, 1231–1239 (2011). https://doi.org/10.1007/s00216-011-5203-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5203-0

Keywords

Navigation