Skip to main content
Log in

Quantification of the six major α-dicarbonyl contaminants in peritoneal dialysis fluids by UHPLC/DAD/MSMS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

During heat sterilization of peritoneal dialysis solutions, glucose is partially transformed into glucose degradation products (GDPs), which significantly reduce the biocompatibility of these medicinal products. Targeted α-dicarbonyl screening identified glyoxal, methylglyoxal, 3-deoxyglucosone, 3,4-dideooxyglucosone-3-ene, glucosone, and 3-deoxygalactosone as the major six GDPs with α-dicarbonyl structure. In the present study, an ultra-high-performance liquid chromatography method was developed which allows the separation of all relevant α-dicarbonyl GDPs within a run time of 15 min after derivatization with o-phenylenediamine. Hyphenated diode array detection/tandem mass spectrometry detection provides very robust quantification and, at the same time, unequivocal peak confirmation. Systematic evaluation of the derivatization process resulted in an optimal derivatization period that provided maximal derivatization yield, minimal de novo formation (uncertainty range ±5%), and maximal sample throughput. The limit of detection of the method ranged from 0.13 to 0.19 μM and the limit of quantification from 0.40 to 0.57 μM. Relative standard deviations were below 5%, and recovery rates ranged between 91% and 154%, dependent on the type and concentration of the analyte (in 87 out of 90 samples, recovery rates were 100 ± 15%). The method was then applied for the analysis of commercial peritoneal dialysis fluids (nine different product types, samples from three lots of each).

A novel UHPLC/DAD/MSMS method allows the quantification of the six major α-dicarbonyl contaminants in peritoneal dialysis fluids

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sharma A, Blake PG (2007) Peritoneal dialysis. In: Brenner BM (ed) Brenner and Rector’s the kidney. Elsevier Saunders, Philadelphia, pp 2007–2037

    Google Scholar 

  2. Ledebo I, Wieslander A, Kjellstrand P (2000) Can we prevent the degradation of glucose in peritoneal dialysis solutions? Perit Dial Int 20(suppl 2):S48–S51

    Google Scholar 

  3. Frischmann M, Spitzer J, Fünfrocken M, Mittelmaier S, Deckert M, Fichert T, Pischetsrieder M (2009) Development and validation of an HPLC method to quantify 3,4-dideoxyglucosone-3-ene in peritoneal dialysis fluids. Biomed Chromatogr 23(8):843–851

    Article  CAS  Google Scholar 

  4. Tauer A, Knerr T, Niwa T, Schaub TP, Lage C, Passlick-Deetjen J, Pischetsrieder M (2001) In vitro formation of N[epsilon]-(carboxymethyl)lysine and imidazolones under conditions similar to continuous ambulatory peritoneal dialysis. Biochem Biophys Res Comm 280(5):1408–1414

    Article  CAS  Google Scholar 

  5. Mahiout A, Ehlerding G, Brunkhorst R (1996) Advanced glycation end-products in the peritoneal fluid and in the peritoneal membrane of continuous ambulant peritoneal dialysis patients. Nephrol Dial Transplant 11(suppl 5):2–6

    Google Scholar 

  6. Honda K, Nitta K, Horita S, Yumura W, Nihei H, Nagai R, Ikeda K, Horiuchi S (1999) Accumulation of advanced glycation end products in the peritoneal vasculature of continuous ambulatory peritoneal dialysis patients with low ultra-filtration. Nephrol Dial Transplant 14(6):1541–1549

    Article  CAS  Google Scholar 

  7. Vriese AS (2005) The John F. Maher recipient lecture 2004: rage in the peritoneum. Perit Dial Int 25(1):8–11

    Google Scholar 

  8. Witowski J, Korybalska K, Wisniewska J, Breborowicz A, Gahl GM, Frei U, Passlick-Deetjen J, Jorres A (2000) Effect of glucose degradation products on human peritoneal mesothelial cell function. J Am Soc Nephrol 11(4):729–739

    CAS  Google Scholar 

  9. Morgan LW, Wieslander A, Davies M, Horiuchi T, Ohta Y, Beavis MJ, Craig KJ, Williams JD, Topley N (2003) Glucose degradation products (GDP) retard remesothelialization independently of D-glucose concentration. Kidney Int 64(5):1854–1866

    Article  CAS  Google Scholar 

  10. Lee D-H, Choi S-Y, Ryu H-M, Kim C-D, Park S-H, Chung H-Y, Kim I-S, Kim Y-L (2009) 3,4-Dideoxyglucosone-3-ene induces apoptosis in human peritoneal mesothelial cells. Perit Dial Int 29(1):44–51

    CAS  Google Scholar 

  11. Tomo T, Okabe E, Yamamoto T, Namoto S, Iwashita T, Matsuyama K, Kadota J, Nasu M (2005) Synergistic cytotoxicity of acidity and 3,4-dideoxyglucosone-3-ene under the existence of lactate in peritoneal dialysis fluid. Ther Apher Dial 9(2):182–187

    Article  CAS  Google Scholar 

  12. Rippe B, Simonsen O, Heimbürger O, Christensson A, Haraldsson B, Stelin G, Weiss L, Nielsen F-D, Bro S, Friedberg M, Wieslander A (2001) Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney Int 59(1):348–357

    Article  CAS  Google Scholar 

  13. Williams JD, Topley N, Craig KJ, Mackenzie RK, Pischetsrieder M, Lage C, Passlick-Deetjen J (2004) The Euro-balance trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int 66(1):408–418

    Article  Google Scholar 

  14. Lee HY, Park HC, Seo BJ, Do JY, Yun SR, Song HY, Kim YH, Kim YL, Kim DJ, Kim YS, Ahn C, Kim MJ, Shin SK (2005) Superior patient survival for continuous ambulatory peritoneal dialysis patients treated with a peritoneal dialysis fluid with neutral pH and low glucose degradation product concentration (balance). Perit Dial Int 25(3):248–255

    Google Scholar 

  15. Mortier S, Faict D, Lameire NH, Vriese AS (2005) Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model. Kidney Int 67(4):1559–1565

    Article  CAS  Google Scholar 

  16. Mittelmaier S, Fünfrocken M, Fenn D, Fichert T, Pischetsrieder M (2010) Identification and quantification of the glucose degradation product glucosone in peritoneal dialysis fluids by HPLC/DAD/MSMS. J Chromatogr B Analyt Technol Biomed Life Sci 878(11–12):877–882

    CAS  Google Scholar 

  17. Mittelmaier S, Fünfrocken M, Fenn D, Pischetsrieder M (2011) 3-Deoxygalactosone, a new glucose degradation product in peritoneal dialysis fluids: identification, quantification by HPLC/DAD/MSMS and its pathway of formation. Anal Bioanal Chem 399(4):1689–1697

    Article  CAS  Google Scholar 

  18. Nilsson-Thorell CB, Muscalu N, Andren AH, Kjellstrand PT, Wieslander AP (1993) Heat sterilization of fluids for peritoneal dialysis gives rise to aldehydes. Perit Dial Int 13(3):208–213

    CAS  Google Scholar 

  19. Linden T, Forsback G, Deppisch R, Henle T, Wieslander A (1998) 3-Deoxyglucosone, a promoter of advanced glycation end products in fluids for peritoneal dialysis. Perit Dial Int 18(3):290–293

    CAS  Google Scholar 

  20. Linden T, Cohen A, Deppisch R, Kjellstrand P, Wieslander A (2002) 3,4-Dideoxyglucosone-3-ene (3,4-DGE): a cytotoxic glucose degradation product in fluids for peritoneal dialysis. Kidney Int 62(2):697–703

    Article  CAS  Google Scholar 

  21. Glomb MA, Tschirnich R (2001) Detection of α-dicarbonyl compounds in Maillard reaction systems and in vivo. J Agric Food Chem 49(11):5543–5550

    Article  CAS  Google Scholar 

  22. Anet EFLJ (1961) Degradation of carbohydrates. II. Action of acid and alkali on 3-deoxyhexosones. Aust J Chem 14:295–301

    Article  CAS  Google Scholar 

  23. Erixon M, Wieslander A, Linden T, Carlsson O, Forsback G, Svensson E, Jonsson JA, Kjellstrand P (2006) How to avoid glucose degradation products in peritoneal dialysis fluids. Perit Dial Int 26(4):490–497

    CAS  Google Scholar 

  24. Erixon M, Linden T, Kjellstrand P, Carlsson O, Ernebrant M, Forsback G, Wieslander A, Jonsson JA (2004) PD fluids contain high concentrations of cytotoxic GDPs directly after sterilization. Perit Dial Int 24(4):392–398

    CAS  Google Scholar 

  25. Kjellstrand P, Erixon M, Wieslander A, Linden T, Martinson E (2004) Temperature: the single most important factor for degradation of glucose fluids during storage. Perit Dial Int 24(4):385–391

    CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by Fresenius Medical Care Deutschland GmbH, Germany. We thank the Deutsche Forschungsgemeinschaft for their contribution to the applied UHPLC/MSMS unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Pischetsrieder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mittelmaier, S., Fünfrocken, M., Fenn, D. et al. Quantification of the six major α-dicarbonyl contaminants in peritoneal dialysis fluids by UHPLC/DAD/MSMS. Anal Bioanal Chem 401, 1183–1193 (2011). https://doi.org/10.1007/s00216-011-5195-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5195-9

Keywords

Navigation