Skip to main content
Log in

Shotgun proteomic analytical approach for studying proteins adsorbed onto liposome surface

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The knowledge about the interaction between plasma proteins and nanocarriers employed for in vivo delivery is fundamental to understand their biodistribution. Protein adsorption onto nanoparticle surface (protein corona) is strongly affected by vector surface characteristics. In general, the primary interaction is thought to be electrostatic, thus surface charge of carrier is supposed to play a central role in protein adsorption. Because protein corona composition can be critical in modifying the interactive surface that is recognized by cells, characterizing its formation onto lipid particles may serve as a fundamental predictive model for the in vivo efficiency of a lipidic vector. In the present work, protein coronas adsorbed onto three differently charged cationic liposome formulations were compared by a shotgun proteomic approach based on nano-liquid chromatography–high-resolution mass spectrometry. About 130 proteins were identified in each corona, with only small differences between the different cationic liposome formulations. However, this study could be useful for the future controlled design of colloidal drug carriers and possibly in the controlled creation of biocompatible surfaces of other devices that come into contact with proteins into body fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Felgner PL, Ringold GM (1989) Nature 337:387–388

    Article  CAS  Google Scholar 

  2. Safinya CR (2001) Curr Opin Struct Biol 11:440–448

    Article  CAS  Google Scholar 

  3. McManus JJ, Rädler JO, Dawson KA (2003) Langmuir 19:9630–9637

    Article  CAS  Google Scholar 

  4. McManus JJ, Rädler JO, Dawson KA (2003) J Phys Chem B 107:9869–9875

    Article  CAS  Google Scholar 

  5. Ewert KK, Evans HM, Zidovska A, Bouxsein NF, Ahmad A, Safinya CR (2006) J Am Chem Soc 128:3998–4006

    Article  CAS  Google Scholar 

  6. Cedervall T, Lynch I, Foy M, Berggård T, Donnely SC, Cagney G, Linse S, Dawson KA (2007) Angew Chem Int Ed 119:5856–5858

    Google Scholar 

  7. Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Proc Natl Acad Sci USA 104:2050–2055

    Article  CAS  Google Scholar 

  8. Köcher T, Pichler P, Swart R, Mechtler K (2011) Proteomics 11:1026–1030

    Article  Google Scholar 

  9. Malmström J, Lee H, Aebersold R (2007) Curr Opin Biotechn 18:378–384

    Article  Google Scholar 

  10. Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA (2007) Adv Colloid Interface Sci 134(135):167–174

    Article  Google Scholar 

  11. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Proc Natl Acad Sci USA 105:14265–14270

    Article  CAS  Google Scholar 

  12. Capriotti AL, Caracciolo G, Caruso G, Cavaliere C, Pozzi D, Samperi R, Laganà A (2010) Anal Bioanal Chem 398:2895–2903

    Article  CAS  Google Scholar 

  13. Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Anal Chem 74:383–392

    Google Scholar 

  14. Keller A, Eng J, Zhang N, Li XJ, Aebersold R (2005) Mol Syst Biol 1:1–8

    Article  Google Scholar 

  15. Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) Anal Chem 75:4646–4658

    Article  CAS  Google Scholar 

  16. Geromanos SJ, Hughes C, Golick D, Ciavarini S, Gorenstein MV, Richardson K, Hoyes JB, Vissers JPC, Langridge JI (2011) Proteomics 11:1189–1211

    Article  CAS  Google Scholar 

  17. Bell AW, Deutsch EW, Au CE, Kearney RE, Sechi S, Nilsson T, Bergeron JJM, HUPO Test Sample Working Group (2009) Nat Methods 6:423–430

    Article  CAS  Google Scholar 

  18. Wu CC, MacCoss MJ, Howell KE, Yates JR (2003) Nat Biotechnol 21:532–538

    Article  CAS  Google Scholar 

  19. Bradshaw RA, Burlingame AL, Carr S, Aebersold R (2006) Mol Cell Proteomics 5:787–788

    Article  CAS  Google Scholar 

  20. Wilkins MR, Appel RD, Van Eyk JE, Chung MCM, Görg A et al (2006) Proteomics 6:4–8

    Article  CAS  Google Scholar 

  21. Elias JE, Gygi SP (2007) Nat Methods 4:207–214

    Article  CAS  Google Scholar 

  22. Moore RE, Young MK, Lee TD (2002) J Am Soc Mass Spectrom 13:378–386

    Article  CAS  Google Scholar 

  23. Pussinen PJ, Jauhiainen M, Metso J, Pyle LE, Marcel YL, Fidge NH, Ehnholm C (1998) J Lipid Res 39:152–161

    CAS  Google Scholar 

  24. Cheung MC, Vaisar T, Han X, Heinecke JW, Albers JJ (2010) Biochem 49:7314–7322

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This publication is based on work supported by Award No. KUK-F1-036-32, made by King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Cavaliere.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capriotti, A.L., Caracciolo, G., Cavaliere, C. et al. Shotgun proteomic analytical approach for studying proteins adsorbed onto liposome surface. Anal Bioanal Chem 401, 1195–1202 (2011). https://doi.org/10.1007/s00216-011-5188-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5188-8

Keywords

Navigation