Skip to main content
Log in

Identification and characterization of impurities of tetracosactide by capillary electrophoresis and liquid chromatography coupled to time-of-flight mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Tetracosactide is a synthetic peptide analogue of the human adrenocorticotropic hormone that stimulates the production of cortisol in the adrenal cortex. The medical use of the compound is primarily the diagnosis of the adrenal cortex function. In order to characterize impurities of the drug, tetracosactide samples were analysed by both liquid chromatography and capillary electrophoresis coupled to a quadrupole time-of-flight mass spectrometer. The identification of the impurities was carried out based on accurate mass determination and fragment ion spectra. The presence of several peptides of lower and higher masses than tetracosactide could be shown, including N- and C-terminally truncated peptides as well as peptides which still contained protecting groups or additional amino acids. Furthermore, a semi-quantitative estimation of the relative amounts of the impurities in different samples as well as a commercial preparation revealed that the number and the type of the impurities varied between the samples. Comparing the selectivity of liquid chromatography and capillary electrophoresis regarding the separation of tetracosactide impurities, it can be stated that capillary electrophoresis showed a higher suitability for the separation of tetracosactide fragments (smaller peptides) while the larger peptides, i.e. those wearing protecting groups, were separated more efficiently by liquid chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schwyzer R, Kappeler H (1963) Synthese eines Tetracosapeptides mit hoher corticotroper Wirksamkeit: β1–24-Corticotropin. Helvetica Chimica Acta 46(5):1550–1572

    Article  CAS  Google Scholar 

  2. Toft A, Irvine W (1974) Hormonal Effects of Synthetic ACTH Analogues. Proc R Soc Med 67:749–750

    CAS  Google Scholar 

  3. Vogeser M, Zachoval R, Jacob K (2001) Serum cortisol/cortisone ratio after Synacthen stimulation. Clin Biochem 34(5):421–425

    Article  CAS  Google Scholar 

  4. Bridges NA, Hindmarsh PC, Pringle PJ, Honour JW, Brook CGD (1998) Cortisol, Androstenedione (A4), Dehydroepiandrosterone Sulphate (DHEAS) and 17 Hydroxyprogesterone (17OHP) Responses to Low Doses of (1–24)ACTH. J Clin Endocrinol Metab 83(10):3750–3753

    Article  CAS  Google Scholar 

  5. Otto H, Minneker C, Spaethe R (1966) Synacthen-Kurztest zur Beurteilung der Nebennierenrindenfunktion (Intravenous injection of corticotropin β1—24 in the rapid diagnosis of adrenal cortical function). Dtsch Med Wochenschr 91(20):934–939

    Article  CAS  Google Scholar 

  6. Crowley S, Hindmarsh PC, Holownia P, Honour JW, Brook CGD (1991) The use of low doses of ACTH in the investigation of adrenal function in man. J Endocrinol 130(3):475–479

    Article  CAS  Google Scholar 

  7. Agwu JC, Spoudeas H, Hindmarsh PC, Pringle PJ, Brook CGD (1999) Tests of adrenal insufficiency. Arch Dis Child 80(4):330–333

    Article  CAS  Google Scholar 

  8. Alía P, Villabona C, Giménez O, Sospedra E, Soler J, Navarro MA (2006) Profile, mean residence time of ACTH and cortisol responses after low and standard ACTH tests in healthy volunteers. Clin Endocrinol 65(3):346–351

    Article  Google Scholar 

  9. Collomp K, Arlettaz A, Portier H, Lecoq A-M, Le Panse B, Rieth N, De Ceaurriz J (2008) Short-term glucocorticoid intake combined with intense training on performance and hormonal responses. Br J Sports Med 42(12):983–988

    Article  CAS  Google Scholar 

  10. Soetens E, Hueting J, Meirleir K (1995) No influence of ACTH on maximal performance. Psychopharmacology 118(3):260–266

    Article  CAS  Google Scholar 

  11. Baume N, Steel G, Edwards T, Thorstensen E, Miller B (2008) No variation of physical performance and perceived exertion after adrenal gland stimulation by synthetic ACTH (Synacthen®) in cyclists. Eur J Appl Physiol 104(4):589–600

    Article  CAS  Google Scholar 

  12. WADA (2011) The 2011 Prohibited List. http://www.wada-ama.org/Documents/World_Anti-Doping_Program/WADP-Prohibited-list/To_be_effective/WADA_Prohibited_List_2011_EN.pdf. Accessed Jan 18 2011

  13. Jeffcoate WJ, Phenekos C, Ratcliffe JG, Williams S, Rees L, Besser GM (1977) Comparison of the pharmacokinetics in man of two synthetic ACTH analogues: a1–24 and substituted β1–18 ACTH. Clin Endocrinol 7(1):1–11

    Article  CAS  Google Scholar 

  14. Thevis M, Bredehöft M, Geyer H, Kamber M, Delahaut P, Schänzer W (2006) Determination of Synacthen in human plasma using immunoaffinity purification and liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 20(23):3551–3556

    Article  CAS  Google Scholar 

  15. Thomas A, Kohler M, Schänzer W, Kamber M, Delahaut P, Thevis M (2009) Determination of Synacthen in urine for sports drug testing by means of nano-ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 23(17):2669–2674

    Article  CAS  Google Scholar 

  16. Chaabo A, de Ceaurriz J, Buisson C, Tabet J-C, Lasne F (2011) Simultaneous quantification and qualification of synacthen in plasma. Anal Bioanal Chem 399(5):1835–1843

    Article  CAS  Google Scholar 

  17. Tetracosactide (2011) In: European Pharmacopoeia. 7th edn. European Directorate of The Quality of Medicines, Strasbourg, p monograph 0644

  18. (2011) https://extranet.edqu.eu/4DLink1/pdfs/chromatos/0644.pdf. Accessed April 20

  19. Kasicka V (2010) Recent advances in CE and CEC of peptides (2007–2009). Electrophoresis 31(1):122–146

    Article  CAS  Google Scholar 

  20. Kates SA, Albericio F (eds) (2000) Solid-Phase Synthesis: A Practical Guide. Marcel Dekker, Inc., New York

    Google Scholar 

  21. Chan WC, White PD (eds) (2000) Fmoc Solid Phase Peptide Synthesis - A Practical Approach. Oxford University Press, Oxford

    Google Scholar 

  22. Merrifield RB (1963) Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J Am Chem Soc 85(14):2149–2154

    Article  CAS  Google Scholar 

  23. Cifuentes A, Poppe H (1997) Behavior of peptides in capillary electrophoresis: Effect of peptide charge, mass and structure. Electrophoresis 18(12–13):2362–2376

    Article  CAS  Google Scholar 

  24. Adamson NJ, Reynolds EC (1997) Rules relating electrophoretic mobility, charge and molecular size of peptides and proteins. J Chromatogr B Biomed Sci Appl 699(1–2):133–147

    Article  CAS  Google Scholar 

  25. Sanz-Nebot V, Benavente F, Toro I, Barbosa J (2003) Evaluation of chromatographic versus electrophoretic behaviour of a series of therapeutical peptide hormones. J Chromatogr A 985(1–2):411–423

    Article  CAS  Google Scholar 

  26. Winzor DJ (2003) Classical approach to interpretation of the charge-dependence of peptide mobilities obtained by capillary zone electrophoresis. J Chromatogr A 1015(1–2):199–204

    Article  CAS  Google Scholar 

  27. Tessier B, Blanchard F, Vanderesse R, Harscoat C, Marc I (2004) Applicability of predictive models to the peptide mobility analysis by capillary electrophoresis-electrospray mass spectrometry. J Chromatogr A 1024(1–2):255–266

    Article  CAS  Google Scholar 

  28. Jalali-Heravi M, Shen Y, Hassanisadi M, Khaledi MG (2005) Prediction of electrophoretic mobilities of peptides in capillary zone electrophoresis by quantitative structure-mobility relationships using the offord model and artificial neural networks. Electrophoresis 26(10):1874–1885

    Article  CAS  Google Scholar 

  29. Meek JL (1980) Prediction of peptide retention times in high-pressure liquid chromatography on the basis of amino acid composition. Proc Natl Acad Sci USA 77(3):1632–1636

    Article  CAS  Google Scholar 

  30. Guo D, Mant CT, Taneja AK, Parker JMR, Rodges RS (1986) Prediction of peptide retention times in reversed-phase high-performance liquid chromatography I. Determination of retention coefficients of amino acid residues of model synthetic peptides. J Chromatogr A 359:499–518

    Article  CAS  Google Scholar 

  31. Mant CT, Burke TWL, Black JA, Hodges RS (1988) Effect of peptide chain length on peptide retention behaviour in reversed-phase chromatogrphy. J Chromatogr A 458:193–205

    Article  CAS  Google Scholar 

  32. Petritis K, Kangas LJ, Yan B, Monroe ME, Strittmatter EF, Qian W-J, Adkins JN, Moore RJ, Xu Y, Lipton MS, Camp DG, Smith RD (2006) Improved Peptide Elution Time Prediction for Reversed-Phase Liquid Chromatography-MS by Incorporating Peptide Sequence Information. Anal Chem 78(14):5026–5039

    Article  CAS  Google Scholar 

  33. Spicer V, Grigoryan M, Gotfrid A, Standing KG, Krokhin OV (2010) Predicting Retention Time Shifts Associated with Variation of the Gradient Slope in Peptide RP-HPLC. Anal Chem 82(23):9678–9685

    Article  CAS  Google Scholar 

  34. Tang XJ, Thibault P, Boyd RK (1993) Fragmentation reactions of multiply-protonated peptides and implications for sequencing by tandem mass spectrometry with low-energy collision-induced dissociation. Anal Chem 65(20):2824–2834

    Article  CAS  Google Scholar 

  35. Roepstorff P, Fohlman J (1984) Letter to the editors: Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biol Mass Spectrom 11(11):601–601

    Article  Google Scholar 

  36. Sanz-Nebot V, Toro I, Castillo A, Barbosa J (2001) Investigation of synthetic peptide hormones by liquid chromatography coupled to pneumatically assisted electrospray ionization mass spectrometry: analysis of a synthesis crude of peptide triptorelin. Rapid Commun Mass Spectrom 15(13):1031–1039

    Article  CAS  Google Scholar 

  37. Sanz-Nebot V, Toro I, Garcés A, Barbosa J (1999) Separation and identification of peptide mixtures in a synthesis crude of carbetocin by liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 13(23):2341–2347

    Article  CAS  Google Scholar 

  38. Sanz-Nebot V, Benavente F, Barbosa J (2000) Separation and characterization of multicomponent peptide mixtures by liquid chromatography-electrospray ionization mass spectrometry: Application to crude products of the synthesis of leuprolide. J Chromatogr A 870(1–2):315–334

    Article  CAS  Google Scholar 

  39. Sanz-Nebot V, Benavente F, Toro I, Barbosa J (2004) Separation and characterization of complex crude mixtures produced in the synthesis of therapeutic peptide hormones by liquid chromatography coupled to electrospray mass spectrometry (LC-ES-MS). Anal Chim Acta 521(1):25–36

    Article  CAS  Google Scholar 

  40. Litowski JR, Semchuk PD, Mant CT, Hodges RS (1999) Hydrophilic interaction/cation-exchange chromatography for the purification of synthetic peptides from closely related impurities: serine side-chain acetylated peptides. J Pept Res 54(1):1–11

    Article  CAS  Google Scholar 

  41. Bayer E (1991) Auf dem Weg zur chemischen Synthese von Proteinen. Angewandte Chemie 103(2):117–133

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Federal Institute for Drugs and Medical Devices (BfArM, Bonn, Germany) is gratefully acknowledged for providing the samples of TCS and its impurities. AT thanks the Thomas Gessmann Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Neusüß.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Table S1

(PDF 1.10 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taichrib, A., Scriba, G.K.E. & Neusüß, C. Identification and characterization of impurities of tetracosactide by capillary electrophoresis and liquid chromatography coupled to time-of-flight mass spectrometry. Anal Bioanal Chem 401, 1365–1375 (2011). https://doi.org/10.1007/s00216-011-5183-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5183-0

Keywords

Navigation