Skip to main content
Log in

Ancient Roman wall paintings mapped nondestructively by portable NMR

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The stratigraphies of decorated walls in ancient Herculaneum, Italy, were analyzed by single-sided 1H NMR. A large version of the NMR-MOUSE® with a maximum penetration depth of 25 mm was used to map proton density profiles at different positions of the Mosaic of Neptune and Amphitrite showing considerable differences between different tesserae and the mortar bed at different times of the year. In the House of the Black Room, different mortar layers were observed on painted walls as well as different proton content in different areas due to different moisture levels and different conservation treatments. The proton density profiles of the differently treated areas indicated that one method leads to higher moisture content than the other. Untreated wall paintings from different times were profiled in a recently excavated room at the Villa of the Papyri showing two different types of mortar layer structures which identify two different techniques of preparing the walls for painting. Reflectance Fourier mid-infrared spectroscopy and in situ X-ray fluorescence measurements complemented the NMR measurements and provided additional insight into the identification of organic coatings as well as the nature of the pigments used, respectively. The information acquired nondestructively by NMR is valued for elaborating conservation strategies and for identifying different schools of craftsmen who prepared the mortar supports of the wall paintings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abragam A (1961) The Principles of Nuclear Magnetism. Clarendon Press, Oxford, UK

    Google Scholar 

  2. Blümich B (2005) Essential NMR. Springer, Berlin

    Google Scholar 

  3. Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Clarendon Press, Oxford

    Google Scholar 

  4. Eidmann G, Savelsberg R, Blümler P, Blümich B (1996) J Magn Reson A 122:104–109

    Article  CAS  Google Scholar 

  5. Perlo J, Casanova F, Blümich B (2005) J Magn Reson 176:67–70

    Article  Google Scholar 

  6. www.act-aachen.de, accessed June, 2010

  7. Bümich B, Casanova F, Perlo J, Presciutti F, Anselmi C, Doherty B (2010) Accounts Chem Res 43:761–770

    Article  Google Scholar 

  8. Proietti N, Capitani D, Lamanna R, Presciutti F, Rossi E, Segre AL (2005) J Magn Reson 177:111–117

    Article  CAS  Google Scholar 

  9. Proietti N, Capitani D, Rossi E, Cozzolino S, Segre AL (2007) J Magn Reson 186:311–318

    Article  CAS  Google Scholar 

  10. Blümich B, Anferova S, Sharma S, Segre AL, Federici C (2003) J Magn Reson 161:204–209

    Article  Google Scholar 

  11. Casieri C, Bubici S, Viola I, De Luca F (2004) Solid State Nucl Magn Reson 26:65–73

    Article  CAS  Google Scholar 

  12. Proietti N, Capitani D, Pedemonte E, Blümich B, Segre AL (2004) J Magn Reson 170:113–120

    Article  CAS  Google Scholar 

  13. Del Federico E, Centeno SA, Kehlet C, Currier P, Stockman D, Jerschow A (2010) Anal Bioanal Chem 396:213–220

    Article  Google Scholar 

  14. Rühli FJ, Böni T, Perlo J, Casanova F, Baias M, Egarter E, Blümich B (2007) J Cult Herit 8:257–263

    Article  Google Scholar 

  15. Proietti N, Capitani D, Cozzolino S, Valentini M, Pedemonte E, Princi E, Vicini S, Segre AL (2006) J Phys Chem B 110:23719–23728

    Article  CAS  Google Scholar 

  16. Sharma S, Casanova F, Wachen W, Segre AL, Blümich B (2003) Magn Reson Imag 21:249–255

    Article  CAS  Google Scholar 

  17. Blümich B, Casanova F, Perlo J, Anferova S, Anferov V, Kremer K, Goga N, Kupferschläger K, Adams M (2005) Magn Reson Imag 23:197–201

    Article  Google Scholar 

  18. Blümich B, Casanova F, Perlo J (2008) Prog Nucl Magn Reson Spectrosc 52:197–269

    Article  Google Scholar 

  19. Casieri C, Senni L, Romagnoli M, Santamaria U, De Luca F (2004) J Magn Reson 171:364–372

    Article  CAS  Google Scholar 

  20. Blümich B, Haber A, Casanova F, Del Federico E, Boardman V, Wahl G, Stilliano A, Isolani I (2010) Anal Bioanaly Chem 397:3117–3125

    Article  Google Scholar 

  21. Conservation and management of archaeological sites. Special edition on herculaneum (2007), 8.4

  22. Matteini M (1992) in S. Cather (Editor) The Conservation of Wall Paintings, Getty Publications, 138–148

  23. Matteini M (1999) The mineral approach to the conservation of mural paintings. Barium hydroxide and artificial oxalates, In: Conserving the painted past: developing approaches to wall painting conservation: post prints of an international conference organized by english heritage, 110–115

  24. Carr HY, Purcell EM (1954) Phys Rev 94:630

    Article  CAS  Google Scholar 

  25. Meiboom S, Gill D (1958) Rev Sci Instrum 29:688

    Article  CAS  Google Scholar 

  26. Milliani C, Rosi F, Borgia I, Benedetti P, Brunetti BG, Sgamellotti A (2007) Appl Spectrosc 61:293–299

    Article  Google Scholar 

  27. Rosi F, Daveri A, Miliani C, Verri G, Benedetti P, Pique F, Brunetti BG, Sgamellotti A (2009) Anal Biolanal Chem 395:2097–2106

    Article  CAS  Google Scholar 

  28. Miliani C, Rosi F, Burnstock A, Brunetti BG, Sgamellotti A (2007) Appl Phys A 89:849–856

    Article  CAS  Google Scholar 

  29. Garcia Manzano C (2010) Characterization by XRF of the Neptune and Amphitrite Roman Mosaic at Herculaneum, Italy. Unpublished MS tesis, Hunter College, Pratt Institute

  30. Gallagher W (2007) FTIR analysis of protein structure http://www.chem.uwec.edu/Chem455_S05/Pages/Manuals/FTIR_of_proteins.pdf, accessed January 2011

  31. Vitruvius MP (1999) Ten Books on Architecture [De architectura libri decem]. Cambridge University Press

  32. Donner O (1869) Die erhaltenen antiken Wandmalereien in technischer Beziehung. Breitkopf und Härtel, Leipzig

    Google Scholar 

  33. Del Federico E, Blümich B, Haber A, Garcia Manzano C, Boardman V, Souvorova D. “Non-Destructive Multianalytical characterization of Roman Polychorme Mosaics”. Manuscript in preparation

  34. Roman Wall Paintings: Materials, Techniques, Analysis and Conservation. Proceedings of the International Workshop on Fribourg 7–9 March 1996. Editors, H. Béarat, M. Fuchs, M. Maggetti, D. Paunier

Download references

Acknowledgements

The research at Herculaneum was made possible by the assistance of Alessandra De Vita within the context of the Herculaneum Conservation Project, which is a Packard Humanities Institute project in collaboration with the Soprintendenza Speciale di Napoli e Pompei and the British School at Rome. We thank Pratt Institute’s alumna Vicki Boardman and RWTH Aachen alumnus Jörg Meyer for their assistance in this project. We thank the he Camille and Henry Dreyfus Foundation for providing the funds to purchase the portable XRF and FTIR spectrometers and to Boris Itin (from the New York Structural Biology Center) for his assistance in performing preliminary FTIR investigations for this study. EDF thanks the Pratt Institute's Faculty Development Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Blümich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 191 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haber, A., Blümich, B., Souvorova, D. et al. Ancient Roman wall paintings mapped nondestructively by portable NMR. Anal Bioanal Chem 401, 1441–1452 (2011). https://doi.org/10.1007/s00216-011-5180-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5180-3

Keywords

Navigation