Skip to main content
Log in

On the nanostructure of micrometer-sized cellulose beads

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The analysis of the porosity of materials is an important and challenging field in analytical chemistry. The gas adsorption and mercury intrusion methods are the most established techniques for quantification of specific surface areas, but unfortunately, dry materials are mandatory for their applicability. All porous materials that contain water and other solvents in their functional state must be dried before analysis. In this process, care has to be taken since the removal of solvent bears the risk of an incalculable alteration of the pore structure, especially for soft materials. In the present paper, we report on the use of small-angle X-ray scattering (SAXS) as an alternative analysis method for the investigation of the micro and mesopores within cellulose beads in their native, i.e., water-swollen state; in this context, they represent a typical soft material. We show that even gentle removal of the bound water reduces the specific surface area dramatically from 161 to 109 m2 g−1 in cellulose bead sample type MT50 and from 417 to 220 m2 g−1 in MT100. Simulation of the SAXS curves with a bimodal pore size distribution model reveals that the smallest pores with radii up to 10 nm are greatly affected by drying, whereas pores with sizes in the range of 10 to 70 nm are barely affected. The SAXS results were compared with Brunauer–Emmett–Teller results from nitrogen sorption measurements and with mercury intrusion experiments.

Volume-weighted pore size distribution of wet and dry cellulose beads derived from small-angle X-ray scattering experiments using a bimodal pore structure model

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O’Neil IL, Reichardt E (1951) Method of producing cellulose pellets. United States of America

  2. Peska J, Stamberg J, Hradil J, Ilavsky M (1976) J Chromatogr 125:455

    Article  CAS  Google Scholar 

  3. Luo XG, Zhang LN (2010) J Chromatogr A 1217:5922

    Article  CAS  Google Scholar 

  4. Boeden HF, Pommerening K, Becker M, Rupprich C, Holtzhauer M, Loth F, Muller R, Bertram D (1991) J Chromatogr 552:389

    Article  CAS  Google Scholar 

  5. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373

    Article  CAS  Google Scholar 

  6. Ravikovitch PI, Neimark AV (2001) Colloids Surface A 187:11

    Article  Google Scholar 

  7. Lueking AD, Kim HY, Jagiello J, Bancroft K, Johnson JK, Cole MW (2009) J Low Temp Phys 157:410

    Article  CAS  Google Scholar 

  8. Sonnauer A, Hoffmann F, Froba M, Kienle L, Duppel V, Thommes M, Serre C, Ferey G, Stock N (2009) Angew Chem Int Ed 48:3791

    Article  CAS  Google Scholar 

  9. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309

    Article  CAS  Google Scholar 

  10. Emmerling A, Fricke J (1992) J Non-Cryst Solids 145:113

    Article  CAS  Google Scholar 

  11. Porod G (1951) Kolloid Z Z Polym 124:83

    CAS  Google Scholar 

  12. Porod G (1952) Kolloid Z Z Polym 125:51

    CAS  Google Scholar 

  13. Smarsly B, Antonietti M, Wolff T (2002) J Chem Phys 116:2618

    Article  CAS  Google Scholar 

  14. Stribeck N, Ruland W (1978) J Appl Crystallogr 11:535

    Article  CAS  Google Scholar 

  15. Siemann U, Ruland W (1982) Colloid Polym Sci 260:999

    Article  CAS  Google Scholar 

  16. Ruland W (2001) Carbon 39:323

    Article  CAS  Google Scholar 

  17. Glatter O (1977) J Appl Crystallogr 10:415

    Article  Google Scholar 

  18. Jemian PR, Allen AJ (1994) J Appl Crystallogr 27:693

    Article  CAS  Google Scholar 

  19. Ilavsky J, Jemian PR (2009) J Appl Crystallogr 42:347

    Article  CAS  Google Scholar 

  20. Thommes M, Smarsly B, Groenewolt M, Ravikovitch PI, Neimark AV (2006) Langmuir 22:756

    Article  CAS  Google Scholar 

  21. Egger CC, du Fresne C, Raman VI, Schadler V, Frechen T, Roth SV, Muller-Buschbaum P (2008) Langmuir 24:5877

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C. Wieland thanks BAM Federal Institute for Materials Research and Testing for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas F. Thünemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thünemann, A.F., Klobes, P., Wieland, C. et al. On the nanostructure of micrometer-sized cellulose beads. Anal Bioanal Chem 401, 1101–1108 (2011). https://doi.org/10.1007/s00216-011-5176-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5176-z

Keywords

Navigation