Skip to main content
Log in

Simultaneous measurement of endogenous cortisol, cortisone, dehydroepiandrosterone, and dehydroepiandrosterone sulfate in nails by use of UPLC–MS–MS

  • Short Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Steroid hormone concentrations are mostly determined by using different body fluids as matrices and applying immunoassay techniques. However, usability of these approaches may be restricted for several reasons, including ethical barriers to invasive sampling. Therefore, we developed an ultra-performance LC–MS–MS method for high-throughput determination of concentrations of cortisol, cortisone, dehydroepiandrosterone (DHEA), and DHEA sulfate (DHEAS) in small quantities of human nails. The method was validated for linearity, limits of detection and quantification, recovery, intra and interassay precision, accuracy, and matrix effect. Samples from 10 adult women were analyzed to provide proof-of-principle for the method’s applicability. Calibration curves were linear (r 2 > 0.999) in the ranges 10–5000 pg mg−1 for cortisol, cortisone, and DHEAS, and 50–5000 pg mg−1 for DHEA. Limits of quantification were 10 pg mg−1 for cortisol, cortisone, and DHEAS, and 50 pg mg−1 for DHEA. The sensitivity and specificity of the method were good, and there was no interference with the analytes. Mean recovery of cortisol, cortisone, DHEA, and DHEAS was 90.5%, 94.1%, 84.9%, and 95.9%, respectively, with good precision (coefficient of variation <14% for all analytes) and accuracy (relative error (%) −8.3% to 12.2% for all analytes). The median (pg mg−1, range) hormone concentrations were 69.5 (36–158), 65 (32–133), 212 (50–1077), and 246 (115–547) for cortisol, cortisone, DHEA, and DHEAS, respectively. This method enables measurement of cortisol, cortisone, DHEA, and DHEAS in small quantities of human nails, leading to the development of applications in endocrinology and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Chrousos GP, Gold PW (1992) The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 267(9):1244–1252

    Article  CAS  Google Scholar 

  2. Findling JW, Raff H (2006) Cushing's Syndrome: important issues in diagnosis and management. J Clin Endocrinol Metab 91(10):3746–3753. doi:10.1210/jc.2006-0997

    Article  CAS  Google Scholar 

  3. Ten S, New M, Maclaren N (2001) Clinical review 130: addison's disease 2001. J Clin Endocrinol Metab 86(7):2909–2922

    Article  CAS  Google Scholar 

  4. Anagnostis P, Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis DP (2009) Clinical review: the pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J Clin Endocrinol Metab 94(8):2692–2701. doi:10.1210/jc.2009-0370

    Article  CAS  Google Scholar 

  5. de Kloet CS, Vermetten E, Geuze E, Kavelaars A, Heijnen CJ, Westenberg HG (2006) Assessment of HPA-axis function in posttraumatic stress disorder: pharmacological and non-pharmacological challenge tests, a review. J Psychiatr Res 40(6):550–567. doi:10.1016/j.jpsychires.2005.08.002

    Article  Google Scholar 

  6. Schleimer RP (2000) Interactions between the hypothalamic-pituitary-adrenal axis and allergic inflammation. J Allergy Clin Immunol 106(5 Suppl):S270–274

    Article  CAS  Google Scholar 

  7. Vogelzangs N, Beekman AT, Milaneschi Y, Bandinelli S, Ferrucci L, Penninx BW (2010) Urinary cortisol and six-year risk of all-cause and cardiovascular mortality. J Clin Endocrinol Metab. doi:10.1210/jc.2010-0192

  8. Tegethoff M, Pryce C, Meinlschmidt G (2009) Effects of intrauterine exposure to synthetic glucocorticoids on fetal, newborn, and infant hypothalamic-pituitary-adrenal axis function in humans: a systematic review. Endocr Rev 30(7):753–789. doi:10.1210/er.2008-0014

    Article  CAS  Google Scholar 

  9. Gatti R, Antonelli G, Prearo M, Spinella P, Cappellin E, De Palo EF (2009) Cortisol assays and diagnostic laboratory procedures in human biological fluids. Clin Biochem 42(12):1205–1217. doi:10.1016/j.clinbiochem.2009.04.011

    Article  CAS  Google Scholar 

  10. Kirschbaum C, Tietze A, Skoluda N, Dettenborn L (2009) Hair as a retrospective calendar of cortisol production-Increased cortisol incorporation into hair in the third trimester of pregnancy. Psychoneuroendocrinology 34(1):32–37. doi:10.1016/j.psyneuen.2008.08.024

    Article  CAS  Google Scholar 

  11. Raul JS, Cirimele V, Ludes B, Kintz P (2004) Detection of physiological concentrations of cortisol and cortisone in human hair. Clin Biochem 37(12):1105–1111. doi:10.1016/j.clinbiochem.2004.02.010

    Article  CAS  Google Scholar 

  12. Pounds CA, Pearson EF, Turner TD (1979) Arsenic in fingernails. J Forensic Sci Soc 19(3):165–173

    Article  CAS  Google Scholar 

  13. Gerhardsson L, Englyst V, Lundstrom NG, Nordberg G, Sandberg S, Steinvall F (1995) Lead in tissues of deceased lead smelter workers. J Trace Elem Med Biol 9(3):136–143

    CAS  Google Scholar 

  14. Palmeri A, Pichini S, Pacifici R, Zuccaro P, Lopez A (2000) Drugs in nails: physiology, pharmacokinetics and forensic toxicology. Clin Pharmacokinet 38(2):95–110

    Article  CAS  Google Scholar 

  15. Choi MH, Yoo YS, Chung BC (2001) Measurement of testosterone and pregnenolone in nails using gas chromatography–mass spectrometry. J Chromatogr B Biomed Sci Appl 754(2):495–501

    Article  CAS  Google Scholar 

  16. Antignac J-P, Monteau F, Négriolli J, André F, Le Bizec B (2004) Application of hyphenated mass spectrometric techniques to the determination of corticosteroid residues in biological matrices. Chromatographia 59(Suppl):S13–S22

    Article  CAS  Google Scholar 

  17. Cuzzola A, Petri A, Mazzini F, Salvadori P (2009) Application of hyphenated mass spectrometry techniques for the analysis of urinary free glucocorticoids. Rapid Commun Mass Spectrom 23(18):2975–2982. doi:10.1002/rcm.4214

    Article  CAS  Google Scholar 

  18. Gergely A, Szasz G, Szentesi A, Gyimesi-Forras K, Kokosi J, Szegvari D, Veress G (2006) Evaluation of CD detection in an HPLC system for analysis of DHEA and related steroids. Anal Bioanal Chem 384(7–8):1506–1510. doi:10.1007/s00216-006-0318-4

    Article  CAS  Google Scholar 

  19. Le Bizec B, Marchand P, Maume D, Monteau F, André F (2004) Monitoring anabolic steroids in meat-producing animals. Review of current hyphenated mass spectrometric techniques. Chromatographia 59(Suppl):S3–S11

    Article  Google Scholar 

  20. Lee S, Kwon S, Shin HJ, Lim HS, Singh RJ, Lee KR, Kim YJ (2010) Simultaneous quantitative analysis of salivary cortisol and cortisone in Korean adults using LC–MS–MS. BMB Rep 43(7):506–511

    Article  CAS  Google Scholar 

  21. Perogamvros I, Owen LJ, Newell-Price J, Ray DW, Trainer PJ, Keevil BG (2009) Simultaneous measurement of cortisol and cortisone in human saliva using liquid chromatography–tandem mass spectrometry: application in basal and stimulated conditions. J Chromatogr B Analyt Technol Biomed Life Sci 877(29):3771–3775. doi:10.1016/j.jchromb.2009.09.014

    Article  CAS  Google Scholar 

  22. Taylor RL, Machacek D, Singh RJ (2002) Validation of a high-throughput liquid chromatography–tandem mass spectrometry method for urinary cortisol and cortisone. Clin Chem 48(9):1511–1519

    CAS  Google Scholar 

  23. Vogeser M, Briegel J, Zachoval R (2002) Dialyzable free cortisol after stimulation with Synacthen. Clin Biochem 35(7):539–543

    Article  CAS  Google Scholar 

  24. Engelhart DA, Lavins ES, Sutheimer CA (1998) Detection of drugs of abuse in nails. J Anal Toxicol 22(4):314–318

    CAS  Google Scholar 

  25. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC–MS–MS. Anal Chem 75(13):3019–3030

    Article  CAS  Google Scholar 

  26. Reed MJ, Purohit A, Woo LW, Newman SP, Potter BV (2005) Steroid sulfatase: molecular biology, regulation, and inhibition. Endocr Rev 26(2):171–202. doi:10.1210/er.2004-0003

    Article  CAS  Google Scholar 

  27. Phillips AC, Carroll D, Gale CR, Lord JM, Arlt W, Batty GD (2010) Cortisol, DHEAS, their ratio and the metabolic syndrome: evidence from the Vietnam Experience Study. Eur J Endocrinol 162(5):919–923. doi:10.1530/EJE-09-1078

    Article  CAS  Google Scholar 

  28. Young AH, Gallagher P, Porter RJ (2002) Elevation of the cortisol-dehydroepiandrosterone ratio in drug-free depressed patients. Am J Psychiatry 159(7):1237–1239

    Article  Google Scholar 

  29. Warnock F, McElwee K, Seo RJ, McIsaac S, Seim D, Ramirez-Aponte T, Macritchie KA, Young AH (2010) Measuring cortisol and DHEA in fingernails: a pilot study. Neuropsychiatr Dis Treat 6:1–7

    CAS  Google Scholar 

  30. Kushnir MM, Neilson R, Roberts WL, Rockwood AL (2004) Cortisol and cortisone analysis in serum and plasma by atmospheric pressure photoionization tandem mass spectrometry. Clin Biochem 37(5):357–362. doi:10.1016/j.clinbiochem.2004.01.005

    Article  CAS  Google Scholar 

  31. Palermo M, Delitala G, Mantero F, Stewart PM, Shackleton CH (2001) Congenital deficiency of 11beta-hydroxysteroid dehydrogenase (apparent mineralocorticoid excess syndrome): diagnostic value of urinary free cortisol and cortisone. J Endocrinol Invest 24(1):17–23

    CAS  Google Scholar 

  32. Glowka FK, Kosicka K, Karazniewicz-Lada M (2010) HPLC method for determination of fluorescence derivatives of cortisol, cortisone and their tetrahydro- and allo-tetrahydro-metabolites in biological fluids. J Chromatogr B Analyt Technol Biomed Life Sci 878(3–4):283–289. doi:10.1016/j.jchromb.2009.11.016

    CAS  Google Scholar 

  33. Palermo M, Shackleton CH, Mantero F, Stewart PM (1996) Urinary free cortisone and the assessment of 11 beta-hydroxysteroid dehydrogenase activity in man. Clin Endocrinol (Oxf) 45(5):605–611

    Article  CAS  Google Scholar 

  34. Sauve B, Koren G, Walsh G, Tokmakejian S, Van Uum SH (2007) Measurement of cortisol in human hair as a biomarker of systemic exposure. Clin Invest Med 30(5):E183–E191

    CAS  Google Scholar 

  35. Ritsner M, Gibel A, Maayan R, Ratner Y, Ram E, Biadsy H, Modai I, Weizman A (2005) Cortisol/dehydroepiandrosterone ratio and responses to antipsychotic treatment in schizophrenia. Neuropsychopharmacology 30(10):1913–1922. doi:10.1038/sj.npp.1300747

    Article  CAS  Google Scholar 

  36. Di Luigi L, Baldari C, Sgro P, Emerenziani GP, Gallotta MC, Bianchini S, Romanelli F, Pigozzi F, Lenzi A, Guidetti L (2008) The type 5 phosphodiesterase inhibitor tadalafil influences salivary cortisol, testosterone, and dehydroepiandrosterone sulphate responses to maximal exercise in healthy men. J Clin Endocrinol Metab 93(9):3510–3514. doi:10.1210/jc.2008-0847

    Article  Google Scholar 

  37. Arlt W, Hammer F, Sanning P, Butcher SK, Lord JM, Allolio B, Annane D, Stewart PM (2006) Dissociation of serum dehydroepiandrosterone and dehydroepiandrosterone sulfate in septic shock. J Clin Endocrinol Metab 91(7):2548–2554. doi:10.1210/jc.2005-2258

    Article  CAS  Google Scholar 

  38. Miller WL (2008) Steroidogenic enzymes. Endocr Dev 13:1–18. doi:10.1159/000134751

    Article  CAS  Google Scholar 

  39. Matsumoto T, Sakura N, Ueda K (1990) Steroid sulfatase activity in nails: screening for X-linked ichthyosis. Pediatr Dermatol 7(4):266–269

    Article  CAS  Google Scholar 

  40. DiGiovanna JJ, Robinson-Bostom L (2003) Ichthyosis: etiology, diagnosis, and management. Am J Clin Dermatol 4(2):81–95

    Article  Google Scholar 

  41. de Berker DA, Andre J, Baran R (2007) Nail biology and nail science. Int J Cosmet Sci 29(4):241–275. doi:10.1111/j.1467-2494.2007.00372.x

    Article  Google Scholar 

  42. Kidwell DA, Blank DL (1995) Mechanisms of incorporation of drugs into hair and the interpretation of hair analysis data. In: Cone EJ, Welch MJ, Babecki MBG (eds) Hair testing for drugs of abuse: international research on standards and technology (NIH Publication No. 95-3727). U.S. Dept. of Health and Human Services, Public Health Service, National Institutes of Health, National Institute on Drug Abuse, Rockville, pp 19–90

    Google Scholar 

  43. Shen M, Xiang P, Shen B, Bu J, Wang M (2009) Physiological concentrations of anabolic steroids in human hair. Forensic Sci Int 184(1–3):32–36. doi:10.1016/j.forsciint.2008.11.014

    Article  CAS  Google Scholar 

  44. Tegethoff M, Raul JS, Jam C, Ben Khelil M, Meinlschmidt G (2011) Dehydroepiandrosterone in nails of infants: a potential biomarker of intrauterine responses to maternal stress. Biological Psychology. doi:10.1016/j.biopsycho.2011.05.007

Download references

Acknowledgements

Sources of funding and support: this project was financed by the German National Academic Foundation and the Research Foundation of the University of Basel (to MT), and the Swiss National Science Foundation (SNSF), project no. 51A240–104890, (to GM). The funders had no role in study design, in the collection, analysis, and interpretation of data, in the writing of the report, and in the decision to submit the paper for publication. The authors have declared that no conflict of interests exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Sébastien Raul.

Additional information

Mehdi Ben Khelil and Marion Tegethoff share first authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Khelil, M., Tegethoff, M., Meinlschmidt, G. et al. Simultaneous measurement of endogenous cortisol, cortisone, dehydroepiandrosterone, and dehydroepiandrosterone sulfate in nails by use of UPLC–MS–MS. Anal Bioanal Chem 401, 1153–1162 (2011). https://doi.org/10.1007/s00216-011-5172-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5172-3

Keywords

Navigation