Skip to main content
Log in

Double-pulse laser-induced breakdown spectroscopy for analysis of molten glass

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A mobile double-pulse laser-induced breakdown spectroscopy system for industrial environments is presented. Its capabilities as a process analytical technique for the recovery of metals from molten inorganic wastes are investigated. Using low-melting glass doped with different amounts of additives as a model system for recycling slags, the optimum number of shots, laser inter-pulse and acquisition delay times are optimized for solid and liquid (1200 °C) glass. Limits of detection from 7 ppm (Mn) to 194 ppm (Zn) are achieved working at a distance of 75 cm from the sample. To simplify the quantification of molten samples in an industrial furnace, the possibility is examined of using solid standards for analysis of molten material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gruber J, Heitz J, Strasser H, Bäuerle D, Ramaseder N (2001) Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B 56:685–693

    Article  Google Scholar 

  2. Lorenzen CJ, Carlhoff C, Hahn U, Jogwich M (1992) Applications of laser-induced emission spectral analysis for industrial process and quality control. J Anal At Spectrom 7:1029–1035

    Article  CAS  Google Scholar 

  3. Aragón C, Aguilera JA, Campos J (1993) Determination of Carbon Content in Molten Steel Using Laser-Induced Breakdown Spectroscopy. Appl Spectrosc 47(5):606–608

    Article  Google Scholar 

  4. Noll R, Bette H, Brysch A, Kraushaar M, Mönch I, Peter L, Sturm V (2001) Laser-induced breakdown spectrometry - applications for production control and quality assurance in the steel industry. Spectrochimica Acta Part B: Atomic Spectroscopy 56(6):637–649

    Article  Google Scholar 

  5. Gruber J, Heitz J, Arnold N, Bauerle D, Ramaseder N, Meyer W, Hochortler J, Koch F (2004) In situ analysis of metal melts in metallurgic vacuum devices by laser-induced breakdown spectroscopy. Appl Spectrosc 58(4):457–462

    Article  CAS  Google Scholar 

  6. Palanco S, Conesa S, Laserna JJ (2004) Analytical control of liquid steel in an induction melting furnace using a remote laser-induced plasma spectrometer. J Anal At Spectrom 19(4):462–467

    Article  CAS  Google Scholar 

  7. Ozaki T, Takahashi T, Iwai Y, Gunji K, Sudo E (1984) Giant Pulse Laser Direct Spectrochemical Analysis of C, Si, and Mn in Liquid Iron. Transactions ISIJ 24(6):463–470

    Article  Google Scholar 

  8. Rai AK, Yueh FY, Singh JP, Zhang H (2002) High temperature fiber optic laser-induced breakdown spectroscopy sensor for analysis of molten alloy constituents. Review of Scientific Instruments 73(10):3589–3599

    Article  CAS  Google Scholar 

  9. Panne U, Clara M, Haisch C, Niessner R (1998) Analysis of glass and glass melts during the vitrification of fly and bottom ashes by laser-induced plasma spectroscopy. Part II. Process analysis. Spectrochimica Acta Part B 53(14):1969–1981

    Article  Google Scholar 

  10. Yun J-I, Klenze R, Kim J-I (2002) Laser-induced breakdown Spectroscopy for the on-line multielement analysis of highly radioactive glass melt simulants. Part II: Analyses of molten glass samples. Appl Spectrosc 56(7):852–858

    Article  CAS  Google Scholar 

  11. Panne U, Neuhauser RE, Haisch C, Fink H, Niessner R (2002) Remote analysis of a mineral melt by laser-induced plasma spectroscopy. Appl Spectrosc 56(3):375–380

    Article  CAS  Google Scholar 

  12. López-Moreno C, Palanco S, Laserna JJ (2005) Quantitative analysis of samples at high temperature with remote laser-induced breakdown spectrometry using a room-temperature calibration plot. Spectrochimica Acta Part B 60:1034–1039

    Article  Google Scholar 

  13. Kley G, Brenneis R, Adamczyk B, Simon F (2006) Thermochemical Treatment - Technologies for Recovery and Utilisation of Materials. Chin J Process Eng 6(2):231–236

    CAS  Google Scholar 

  14. Sattmann R et al (1995) Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses. Journal of Physics D: Applied Physics 28(10):2181

    Article  CAS  Google Scholar 

  15. Burakov VS, Tarasenko NV, Nedelko MI, Kononov VA, Vasilev NN, Isakov SN (2009) Analysis of lead and sulfur in environmental samples by double-pulse laser-induced breakdown spectroscopy. Spectrochimica Acta Part B 64:141–146

    Article  Google Scholar 

  16. Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E (2008) Effect of target composition on the emission enhancement observed in Double-Pulse Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy 63(2):312–323

    Article  Google Scholar 

  17. St-Onge L, Detalle V, Sabsabi M (2002) Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses. Spectrochimica Acta Part B: Atomic Spectroscopy 57(1):121–135

    Article  Google Scholar 

  18. Gautier C, Fichet P, Menut D, Dubessy J (2006) Applications of the double-pulse laser-induced breakdown spectroscopy (LIBS) in the collinear beam geometry to the elemental analysis of different materials. Spectrochimica Acta Part B 61:210–219. doi:10.1016/j.sab.2006.01.005

    Article  Google Scholar 

  19. St-Onge L, Sabsabi M, Cielo P (1998) Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode. Spectrochimica Acta Part B: Atomic Spectroscopy 53(3):407–415

    Article  Google Scholar 

  20. Müller K, Stege H (2003) Evaluation of the analytical potential of laser-induced breakdown spectrometry (LIBS) for the analysis of historical glasses. Archaeometry 45(Part 3):421–433

    Article  Google Scholar 

  21. Ducreux-Zappa M, Mermet JM (1996) Analysis of glass by UV laser ablation inductively coupled plasma atomic emission spectrometry. Part 2. Analytical figures of merit. Spectrochimica Acta Part B: Atomic Spectroscopy 51(3):333–341

    Article  Google Scholar 

  22. Adamczyk B, Brenneis R, Adam C, Mudersbach D (2010) Recovery of Chromium from AOD-Converter Slags. Steel Research International 81(12):1078–1083. doi:10.1002/srin.201000193

    Article  CAS  Google Scholar 

  23. Ye G, Burström E, Kuhn M, Piret J (2003) Reduction of steel-making slags for recovery of valuable metals and oxide materials. Scand J Metall 32(1):7–14. doi:10.1034/j.1600-0692.2003.00526.x

    Article  CAS  Google Scholar 

  24. Higley LW Jr, Neumeier LA, Fine MM, Hartman JC (1979) Development of a pyrometallurgical technique to recycle stainless steel wastes. Conservation & Recycling 3(1):53–62

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Oliver Ehlert and Rudolf Brenneis for providing the raw glass for the standards and LTB Lasertechnik Berlin GmbH for their support. Financial support from the DFG-NSF grant GO 1848/1-1 and NI 185/38-1 (USA, Germany) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Gornushkin.

Additional information

Awarded an ABC Poster Prize on the occasion of ANAKON 2011 held in Zürich, Switzerland from 22–26th March 2011.

Published in the ANAKON special issue with guest editors P. Dittrich, D. Günther, G. Hopfgartner, and R. Zenobi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matiaske, AM., Gornushkin, I.B. & Panne, U. Double-pulse laser-induced breakdown spectroscopy for analysis of molten glass. Anal Bioanal Chem 402, 2597–2606 (2012). https://doi.org/10.1007/s00216-011-5165-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5165-2

Keywords

Navigation