Investigation on the phenolic constituents in Hamamelis virginiana leaves by HPLC-DAD and LC-MS/MS


Aqueous and acetone/water extracts from Hamamelis virginiana leaves were investigated to obtain a thorough insight into their phenolic composition. To secure compound integrity, a gentle extraction method including the exclusion of light was used. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses yielded a fingerprint including 27 phenolic constituents. Quantification of the key compounds on an equivalent basis by high-performance liquid chromatography diode-array detection (HPLC-DAD) showed that gallotannins consisting of six to 11 galloyl units constitute the main fraction, whereas procyanidins and catechin represented only a minor part. Closer inspection revealed that both extracts possess virtually the same galloyl hexose distribution, and the octagalloyl hexose represents the major tannin constituent. Additionally, eight flavonol glycosides and their corresponding aglycones quercetin and kaempferol, as well as three chlorogenic acid isomers and other hydroxycinnamic acids, were identified. Moreover, stability studies on the aqueous extract (5 °C, dark; room temperature, dark; room temperature, light) revealed that the phenolic profile underwent changes when exposed to light. Especially the gallotannins proved to be considerably unstable which may result in phytochemically altered Hamamelis leaf extracts upon transport and storage.

Phenolic constituents in Hamamelis.virginiana leaves

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Laux P, Oschmann R (1993) Z Phytother 14:155–166

    Google Scholar 

  2. 2.

    Reuter J, Merfort I, Schempp CM (2010) Am J Clin Dermatol 11:247–267

    Google Scholar 

  3. 3.

    Mingshu L, Kai Y, Qiang H, Dongying J (2006) J Basic Microbiol 46:68–84

    Article  Google Scholar 

  4. 4.

    Vennat B, Gross D, Pourrat A, Pourrat H (1992) Pharm Acta Helv 67:11–14

    CAS  Google Scholar 

  5. 5.

    Vennat B, Pourrat H, Pouget MP, Gross D, Pourrat A (1988) Planta Med 54:454–457

    Article  CAS  Google Scholar 

  6. 6.

    Gonzalez MJ, Torres JL, Medina I (2010) J Agric Food Chem 58:4274–4283

    Article  CAS  Google Scholar 

  7. 7.

    Schilling G, Keller A (1986) J Biosci 41:253–257

    CAS  Google Scholar 

  8. 8.

    Wang H, Provan GJ, Helliwell K (2003) J Pharm Biomed Anal 33:539–544

    Article  CAS  Google Scholar 

  9. 9.

    Friedrich H, Krüger N (1974) Planta Med 26:326–332

    CAS  Google Scholar 

  10. 10.

    Sagareishvili TG, Yarosh EA, Kemertelidze EP (1999) Chem Nat Compd 35:585

    Article  CAS  Google Scholar 

  11. 11.

    Hümmer W, Schreier P (2008) Mol Nutr Food Res 52:1381–1398

    Article  Google Scholar 

  12. 12.

    Carelli V, Liquori AM, Mele A (1955) Nature 176:70–71

    Article  CAS  Google Scholar 

  13. 13.

    Salminen JP (2003) J Chem Ecol 29:1289–1305

    Article  CAS  Google Scholar 

  14. 14.

    Jaiswal R, Sovdat T, Vivan F, Kuhnert N (2010) J Agric Food Chem 58:5471–5484

    Article  CAS  Google Scholar 

  15. 15.

    Rohr GE, Riggio G, Meier B, Sticher O (2000) Phytochem Anal 11:113–120

    Article  CAS  Google Scholar 

  16. 16.

    Appeldoorn MM, Vincken JP, Sanders M, Hollman PC, Gruppen H (2009) J Agric Food Chem 57:6007–6013

    Article  CAS  Google Scholar 

  17. 17.

    Hokkanen J, Mattila S, Jaakola L, Pirttila AM, Tolonen A (2009) J Agric Food Chem 57:9437–9447

    Article  CAS  Google Scholar 

  18. 18.

    Engels C, Gänzle MG, Schieber A (2010) J Agric Food Chem 58:775–780

    Article  CAS  Google Scholar 

  19. 19.

    Hoffmann-Bohm K, Ferstl W, Aye RD (2009) Hager Rom - Hagers Enzyklopädie der Arzneistoffe und Drogen. Springer, Stuttgart

    Google Scholar 

  20. 20.

    Herrmann K (1978) Fortschr Chem Org Naturst 35:73–132

    CAS  Google Scholar 

  21. 21.

    Kroon PA, Williamson G (2010) J Sci Food Agric 79:355–361

    Article  Google Scholar 

  22. 22.

    Marques V, Farah A (2009) Food Chem 113:1370–1376

    Article  CAS  Google Scholar 

  23. 23.

    Berardini N, Carle R, Schieber A (2004) Rapid Commun Mass Spectrom 18:2208–2216

    Article  CAS  Google Scholar 

  24. 24.

    Mullen W, Yokota T, Lean ME, Crozier A (2003) Phytochemistry 64:617–624

    Article  CAS  Google Scholar 

  25. 25.

    Grundhöfer P, Niemetz R, Schilling G, Gross GG (2001) Phytochemistry 57:915–927

    Article  Google Scholar 

  26. 26.

    Hatano T, Kira R, Yoshizaki M, Okuda T (1986) Phytochemistry 25:2787–2789

    Article  CAS  Google Scholar 

  27. 27.

    Rodriguez de Sotillo D, Hadley M, Holm ET (1994) J Food Sci 59:649–651

    Article  CAS  Google Scholar 

  28. 28.

    Fahlman BM, Krol ES (2009) J Photochem Photobiol B 97:123–131

    Article  CAS  Google Scholar 

  29. 29.

    Smith GJ, Thomsen SJ, Markham KR, Andary C, Cardon D (2000) J Photochem Photobiol Chem 136:87–91

    Article  CAS  Google Scholar 

Download references


The authors wish to thank Prof. Dr. habil. Dr. h. c. R. Carle and Dr. D. R. Kammerer (Institute of Food Science and Biotechnology, Hohenheim University, Stuttgart, Germany) for providing access to the illumination equipment.

Author information



Corresponding author

Correspondence to Florian C. Stintzing.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duckstein, S.M., Stintzing, F.C. Investigation on the phenolic constituents in Hamamelis virginiana leaves by HPLC-DAD and LC-MS/MS. Anal Bioanal Chem 401, 677–688 (2011).

Download citation


  • Hamamelis virginiana
  • Gallotannins
  • Chlorogenic acids
  • Flavonol glycosides
  • Stability