Analytical and Bioanalytical Chemistry

, Volume 401, Issue 1, pp 353–363 | Cite as

Identification of biotransformation products of macrolide and fluoroquinolone antimicrobials in membrane bioreactor treatment by ultrahigh-performance liquid chromatography/quadrupole time-of-flight mass spectrometry

  • Senka Terzic
  • Ivan Senta
  • Marin Matosic
  • Marijan AhelEmail author
Original Paper


Ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry was applied for the identification of transformation products (TPs) of fluoroquinolone (norfloxacin and ciprofloxacin) and macrolide (azithromycin, erythromycin, and roxitromycin) antimicrobials in wastewater effluents from a Zenon hollow-fiber membrane bioreactor (MBR). The detected TPs were thoroughly characterized using the accurate mass feature for the determination of the tentative molecular formulae and MS-MS experiments for the structural elucidation of unknowns. Several novel TPs, which have not been previously reported in the literature, were identified. The TPs of azithromycin and roxithromycin, identified in MBR effluent, were conjugate compounds, which were formed by phosphorylation of desosamine moiety. Transformation of fluoroquinolones yielded two types of products: conjugates, formed by succinylation of the piperazine ring, and smaller metabolites, formed by an oxidative break-up of piperazine moiety to form the 7-[(2-carboxymethyl)amino] group. A semi-quantitative assessment of these TPs suggested that they might have contributed significantly to the overall balance of antimicrobial residues in MBR effluents and thus to the overall removal efficiency. Determination of TPs during a period of 2 months indicated a conspicuous dynamics, which warrants further research to identify microorganisms involved and treatment conditions leading to their formation.


Proposed structures of the novel transformation products of antimicrobials, formed during MBR wastewater treatment. AZI TP – phosphorylated azithromycin; ROX TP -phosphorylated roxithromycin; NOR TP1 – succinyl norfloxacin; CIP TP1 – succinyl ciprofloxacin; NOR TP2 - 7-[(carboxymethyl)amino]-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid; CIP TP2 - 7-[(carboxymethyl)amino]-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid.


Antimicrobials Fluoroquinolone Macrolide Transformation products Membrane bioreactor Liquid chromatography–mass spectrometry 



This work was financially supported by the Ministry of Science, Education and Sports of the Republic of Croatia through the project on organic contaminants as molecular markers of the anthropogenic impact on the environment (Project No: 098-0982934-2712). Technical assistance of Nenad Muhin is also gratefully acknowledged.

Supplementary material

216_2011_5060_MOESM1_ESM.pdf (502 kb)
(PDF 501 kb)


  1. 1.
    Kümmerer K (2008) Pharmaceuticals in the environment: sources, fate, effects and risks, 3 rdth edn. Springer, HeidelbergGoogle Scholar
  2. 2.
    Zhang XX, Zhang T, Fang HP (2009) Appl Microbiol Biotechnol 82:397–414CrossRefGoogle Scholar
  3. 3.
    Gobel A, McArdell CS, Joss A, Siegrist H, Giger W (2007) Sci Tot Environ 372:361–371CrossRefGoogle Scholar
  4. 4.
    Gros M, Petrovic M, Ginebreda A, Barcelo D (2010) Environ Int 36:15–26CrossRefGoogle Scholar
  5. 5.
    Le-Minh N, Khan SJ, Drewes JE, Stuetz RM (2010) Wat Res 44:4295–4323CrossRefGoogle Scholar
  6. 6.
    Segura PA, Francois M, Gagnon C, Sauve S (2009) Environ Health Perspec 117:675–684CrossRefGoogle Scholar
  7. 7.
    Sipma J, Osuna B, Collado N, Monclus H, Ferrero G (2010) Desalination 250:653–659CrossRefGoogle Scholar
  8. 8.
    Kosjek T, Heath E, Petrovic M, Barcelo D (2007) Trends Anal Chem 26:1076–1085CrossRefGoogle Scholar
  9. 9.
    Garcia-Galan MJ, Diaz-Cruz MS, Barcelo D (2008) Trends Anal Chem 27:1008–1022CrossRefGoogle Scholar
  10. 10.
    Jung CM, Heinze TM, Strakosha R, Elkins CA, Sutherland JB (2009) J Appl Microbiol 106:564–571CrossRefGoogle Scholar
  11. 11.
    Vree TB, Schoondermarkvandeven E, Verweyvanwissen CPWGM, Baars AM, Swolfs A, Vangalen PM, Amatdjaisgroenen H (1995) J Chromatogr B 670:111–123CrossRefGoogle Scholar
  12. 12.
    Hunter RP, Koch DE, Coke RL, Goatley MA, Isaza R (2003) J Vet Pharmacol Therap 26:117–121CrossRefGoogle Scholar
  13. 13.
    Wetzstein HG, Stadler M, Tichy H-V, Dalhoff A, Karl W (1999) Appl Environ Microbiol 65:1556–1563Google Scholar
  14. 14.
    Adjei MD, Heinze TM, Deck J, Freeman JP, Williams AJ, Sutherland JB (2006) Appl Environ Microbiol 72:5790–5793CrossRefGoogle Scholar
  15. 15.
    Krauss M, Singer H, Hollender J (2010) Anal Bioanal Chem 397:943–951CrossRefGoogle Scholar
  16. 16.
    Kern S, Fenner K, Singer HP, Schwarzenbach RP, Hollender J (2009) Environ Sci Technol 43:7039–7046CrossRefGoogle Scholar
  17. 17.
    Plumb R, Castro-Perez J, Granger J, Beattie I, Joncour K, Wright A (2004) Rapid Commun Mass Spectrom 18:2331–2337CrossRefGoogle Scholar
  18. 18.
    Terzic S, Ahel M (2011) Environ Pollut 159:557–566CrossRefGoogle Scholar
  19. 19.
    Kosjek T, Zigon D, Kralj B, Heath E (2008) J Chromat A 1215:57–63CrossRefGoogle Scholar
  20. 20.
    Senta I, Matosic M, Korajlija Jakopovic H, Terzic S, Mijatovic I, Ahel M (Submitted to J Hazard Mater) Removal of antimicrobials using advanced wastewater treatment.Google Scholar
  21. 21.
    Senta I (2009) Occurrence and behavior of sulfonamides, fluoroquinolones, macrolides and trimethoprim in wastewater and natural water, PhD thesis, Zagreb.Google Scholar
  22. 22.
    Terzic S, Senta I, Ahel M, Gros M, Petrovic M, Barcelo D, Müller J, Knepper TP, Martí I, Ventura F, Jovancic P, Jabucar D (2008) Sci Tot Environ 399:66–77CrossRefGoogle Scholar
  23. 23.
    Senta I, Terzic S, Ahel M (2008) Chromatographia 68:747–758CrossRefGoogle Scholar
  24. 24.
    Zhang Y, Jiang H, Go EP, Desaire H (2006) J Am Mass Spectrom 17: 1282-.Google Scholar
  25. 25.
    Yang S, Carlson KH (2004) J Chromatogr A 1038:141–1288CrossRefGoogle Scholar
  26. 26.
    Wetzstein HG, Schneider J, Karl W (2006) Appl Microbiol Biotechnol 71:90–100CrossRefGoogle Scholar
  27. 27.
    Yang SW, Cha JM, Carlson K (2006) Anal Bioanal Chem 385:623–636CrossRefGoogle Scholar
  28. 28.
    Debremaeker D, Visky D, Chepkwony HK, Van Schepdeal A, Roets E, Hoogmartens J (2003) Rapid Commun Mass Spectrom 17:342–350CrossRefGoogle Scholar
  29. 29.
    Noguchi N, Emura A, Matsuyama H, O’Hara K, Sasatsu M, Kono M (1995) Antimicrobial Agents Chemother 39:2359–2363Google Scholar
  30. 30.
    Wright GD (2005) Adv Drug Deliv Rev 57:1451–1470CrossRefGoogle Scholar
  31. 31.
    Schlunzen F, Zarivach R, Harms J, Bashan A, Tocilj A, Albrecht R, Yonath A, Franceschi F (2001) Nature 413:814–821CrossRefGoogle Scholar
  32. 32.
    Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, Bush K, Hooper DC (2006) Nature Med 12:83–88CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Senka Terzic
    • 1
  • Ivan Senta
    • 1
  • Marin Matosic
    • 2
  • Marijan Ahel
    • 1
    Email author
  1. 1.Division of Marine and Environmental ResearchRudjer Boskovic InstituteZagrebCroatia
  2. 2.Faculty of Food Technology and BiotechnologyUniversity of ZagrebZagrebCroatia

Personalised recommendations