Skip to main content

Highly integrated flow assembly for automated dynamic extraction and determination of readily bioaccessible chromium(VI) in soils exploiting carbon nanoparticle-based solid-phase extraction

Abstract

An automated dynamic leaching test integrated in a portable flow-based setup is herein proposed for reliable determination of readily bioaccessible Cr(VI) under worst-case scenarios in soils containing varying levels of contamination. The manifold is devised to accommodate bi-directional flow extraction followed by processing of extracts via either in-line clean-up/preconcentration using multi-walled carbon nanotubes or automatic dilution at will, along with Cr(VI) derivatization and flow-through spectrophotometric detection. The magnitude of readily mobilizable Cr(VI) pools was ascertained by resorting to water extraction as promulgated by current standard leaching tests. The role of carbon nanomaterials for the uptake of Cr(VI) in soil leachates and the configuration of the packed column integrated in the flow manifold were investigated in detail. The analytical performance of the proposed system for in vitro bioaccessibility tests was evaluated in chromium-enriched soils at environmentally relevant levels and in a standard reference soil material (SRM 2701) with a certified value of total hexavalent chromium. The automated method was proven to afford unbiased assessment of water-soluble Cr(VI) in soils as a result of the minimization of the chromium species transformation. By combination of the kinetic leaching profile and a first-order leaching model, the water-soluble Cr(VI) fraction in soils was determined in merely 6 h against >24 h taken in batchwise steady-state standard methods.

Schematic representation of the compact flow set-up for automated dynamic extraction and determination of readily bioaccessible Cr(VI) in soils

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Katz SA, Salem H (1994) The biological and environmental chemistry of chromium. Wiley, New York

    Google Scholar 

  2. 2.

    United States Environmental Protection Agency (USEPA) (1995) Hexavalent chromium (colorimetric), method 7196A. In: Test methods for evaluating solid waste-physical/chemical methods (SW-846, update 3). US Government Printing Office, Washington

    Google Scholar 

  3. 3.

    United States Environmental Protection Agency (USEPA) (1996) Determination of hexavalent chromium in drinking water, groundwater and industrial wastewater effluents by ion-chromatography, method 7199A. In: Test methods for evaluating solid waste-physical/chemical methods (SW-846, update 3). US Government Printing Office, Washington

    Google Scholar 

  4. 4.

    Anthemidis AN, Zachariadis GA, Kougoulis JS, Stratis JA (2002) Talanta 57:15–22

    Article  CAS  Google Scholar 

  5. 5.

    Kuo CY, Jiang SJ, Sahayam AC (2007) J Anal At Spectrom 22:636–641

    Article  CAS  Google Scholar 

  6. 6.

    Li Y, Pradhan NK, Foley R, Low GKC (2002) Talanta 57:1143–1153

    Article  CAS  Google Scholar 

  7. 7.

    United States Environmental Protection Agency (USEPA) (1995) Alkaline digestion of hexavalent chromium, method 3060A. In: Test methods for evaluating solid waste-physical/chemical methods (SW-846, update 3). US Government Printing Office, Washington

    Google Scholar 

  8. 8.

    Pettine M, Capri S (2005) Anal Chim Acta 540:239–246

    Article  CAS  Google Scholar 

  9. 9.

    Huo DW, Lu YS, Kingston HM (1998) Environ Sci Technol 32:3418–3423

    Article  CAS  Google Scholar 

  10. 10.

    Fedotov PS, Miró M (2007) Fractionation and mobility of trace elements in soils and sediments. In: Huang PM, Gadd GM, Violante A (eds) Biophysico-chemical processes of heavy metal and metalloids in soil environments, chapter 12. Wiley, New York, pp 467–520

    Chapter  Google Scholar 

  11. 11.

    DIN (1984) DIN 38414-S4. German standard methods for the examination of water, waste water and sludge. Group S (sludge and sediments). Determination of leachability by water (S4). Deutsches Institut für Normung, Berlin

    Google Scholar 

  12. 12.

    CEN (2002) EN 12457-4. Characterization of waste-leaching-compliance test for leaching of granular waste materials and sludges. Part 1–4, CEN/TC 292: characterisation of waste. Comité Européen de Normalisation, Brussels

  13. 13.

    Miró M, Hansen EH, Chomchoei R, Frenzel W (2005) TrAC Trends Anal Chem 24:759–771

    Article  Google Scholar 

  14. 14.

    Brack W, Bandow N, Schwab K, Schulze T, Streck G (2009) TrAC Trends Anal Chem 28:543–549

    Article  CAS  Google Scholar 

  15. 15.

    Luque-García JL, Luque de Castro MD (2002) Analyst 127:1115–1120

    Article  Google Scholar 

  16. 16.

    Morales-Muñoz S, Luque-García JL, Luque de Castro MD (2004) Anal Chim Acta 515:343–348

    Article  Google Scholar 

  17. 17.

    Grate JW, Taylor RH (1996) Field Anal Chem Technol 1:39–48

    Article  CAS  Google Scholar 

  18. 18.

    Long XB, Miró M, Hansen EH (2006) Analyst 131:132–140

    Article  CAS  Google Scholar 

  19. 19.

    Valcárcel M, Cárdenas S, Simonet BM (2007) Anal Chem 79:4788–4797

    Article  Google Scholar 

  20. 20.

    American Public Health Association, American Water Works Association and Water Pollution Control Federation (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington

    Google Scholar 

  21. 21.

    Unceta N, Séby F, Malherbe J, Donard OFX (2010) Anal Bioanal Chem 397:1097–1111

    Article  CAS  Google Scholar 

  22. 22.

    Swedish Environmental Protection Agency (2002) Guidelines for polluted soils. Stockholm, Sweden

    Google Scholar 

  23. 23.

    Ministero dell’ Ambiente della Republica Italiana (1999) Decreto Ministeriale n. 471, Gazzeta Ufficiale Supplemento Ordinario N. 293, Rome, Italy

  24. 24.

    Nagourney SJ, Wilson SA, Buckley B, Skip-Kingston HM, Yang SY, Long SE (2008) J Anal At Spectrom 23:1550–1554

    Article  CAS  Google Scholar 

  25. 25.

    Rosende M, Miró M, Cerdà V (2008) Anal Chim Acta 619:192–201

    Article  CAS  Google Scholar 

  26. 26.

    Dias ACB, Borges EP, Zagatto EAG, Worsfold PJ (2006) Talanta 68:1076–1082

    Article  CAS  Google Scholar 

  27. 27.

    Long XB, Miró M, Hansen EH (2005) Anal Chem 77:6032–6040

    Article  CAS  Google Scholar 

  28. 28.

    Miller JN, Miller JC (2005) Statistics and chemometrics for analytical chemistry, chapter 7, 5th edn. Pearson Education Ltd, Harlow

    Google Scholar 

  29. 29.

    Pflaum RT, Howick LC (1956) J Am Chem Soc 78:4862–4866

    Article  CAS  Google Scholar 

  30. 30.

    Sandell EB, Onishi H (1978) Photometric determination of trace metals, vol 3, 4th edn. Wiley, New York

    Google Scholar 

  31. 31.

    Pyrzynska K (2010) TrAC Trends Anal Chem 29:718–727

    Article  CAS  Google Scholar 

  32. 32.

    Coughlin RW, Ezra FS, Tan RN (1968) Environ Sci Technol 2:291–297

    Article  CAS  Google Scholar 

  33. 33.

    Dąbrowski A, Podkścielny P, Hubicki Z, Barczak M (2005) Chemosphere 58:1049–1070

    Article  Google Scholar 

  34. 34.

    Stavyiannoudaki V, Vamvakaki V, Chaniotakis N (2009) Anal Bioanal Chem 395:429–435

    Article  CAS  Google Scholar 

  35. 35.

    Baral S, Cotton FA, Ilsley WH (1981) Inorg Chem 20:2696–2703

    Article  CAS  Google Scholar 

  36. 36.

    Hu J, Chen CL, Zhu XX, Wang XK (2009) J Hazard Mater 162:1542–1550

    Article  CAS  Google Scholar 

  37. 37.

    Pillay K, Cukrowska EM, Coville NJ (2009) J Hazard Mater 166:1067–1075

    Article  CAS  Google Scholar 

  38. 38.

    Rastogi R, Kaushal R, Tripathi SK, Sharma AL, Kaur I, Bharadwaj LM (2008) J Colloid Interface Sci 328:421–428

    Article  CAS  Google Scholar 

  39. 39.

    ISO/TS 21268-3 (2007) Soil quality-leaching procedures for subsequent chemical and ecotoxicological testing of soil and soil materials. Part 3: Up-flow percolation test

  40. 40.

    Beauchemin D, Kyser K, Chipley D (2002) Anal Chem 74:3924–3928

    Article  CAS  Google Scholar 

  41. 41.

    Rosende M, Miró M, Cerdà V (2010) Anal Chim Acta 658:41–48

    Article  CAS  Google Scholar 

  42. 42.

    Anderson P, Davidson CM, Duncan AL, Littlejohn D, Ure AM, Garden LM (2000) J Environ Monit 2:234–239

    Article  CAS  Google Scholar 

  43. 43.

    James BR, Petura JC, Vitale RJ, Mussoline GR (1995) Environ Sci Technol 29:2377–2381

    Article  CAS  Google Scholar 

  44. 44.

    Labanowski J, Monna F, Bermond A, Cambier P, Fernandez C, Lamy I, van Oort F (2008) Environ Pollut 152:693–701

    Article  CAS  Google Scholar 

  45. 45.

    Fangueiro D, Bermond A, Santos E, Carapuça H, Duarte A (2005) Talanta 66:844–857

    Article  CAS  Google Scholar 

  46. 46.

    United States Environmental Protection Agency (USEPA) (2004) Elemental and speciated isotope-dilution mass spectrometry, method 6800. In: Test methods for evaluating solid waste—physical/chemical methods (SW-846, update IV). US Government Printing Office, Washington

    Google Scholar 

Download references

Acknowledgments

Maria Rosende thanks the Conselleria d’Economia Hisenda i Innovació from the Government of the Balearic Islands for allocation of a Ph.D. stipend. Manuel Miró gratefully acknowledges the financial support from the Spanish Ministry of Science and Innovation through projects CTM2010-17214 and HP2008-0045 (Integrated Action). Financial support by the Integrated Action E-48/09 from Fundação para a Ciência e a Tecnologia (Portugal) is also acknowledged. Víctor Cerdà is grateful to the Spanish Ministry of Science and Innovation for supporting project CTQ2010-15541. The authors thank Dr. Antonio Frontera and Mr. David Cocovi from the University of the Balearic Islands for fruitful discussions. Carbon nanofibers were kindly gifted by Dr. Reinhard Kriegbaum from Electrovac AG, Austria.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manuel Miró.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 270 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rosende, M., Miró, M., Segundo, M.A. et al. Highly integrated flow assembly for automated dynamic extraction and determination of readily bioaccessible chromium(VI) in soils exploiting carbon nanoparticle-based solid-phase extraction. Anal Bioanal Chem 400, 2217–2227 (2011). https://doi.org/10.1007/s00216-011-4954-y

Download citation

Keywords

  • Hexavalent chromium
  • Bioaccessibility test
  • Soil
  • Automation
  • Miniaturization
  • Carbon nanoparticles