Skip to main content
Log in

Multi-walled carbon nanotubes–dispersive solid-phase extraction combined with nano-liquid chromatography for the analysis of pesticides in water samples

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, the simultaneous separation of a group of 12 pesticides (carbaryl, fensulfothion, mecoprop, fenamiphos, haloxyfop, diclofop, fipronil, profenofos, fonofos, disulfoton, nitrofen, and terbufos) by nano-liquid chromatography with UV detection is described. For the analyses, a 100 μm internal diameter capillary column packed with silica modified with phenyl groups was used. Experimental parameters, including the use of a trapping column for increasing the sensitivity, were optimized and validated. A preliminary study of the applicability of a rapid and practical dispersive solid-phase extraction (DSPE) procedure was developed for the extraction of some of these pesticides (carbaryl, fensulfothion, fenamiphos, fipronil, profenofos, fonofos, disulfoton, nitrofen, and terbufos) from Milli-Q water samples using multi-walled carbon nanotubes (MWCNTs). The method was validated through a recovery study at three different levels of concentration, obtaining limits of detection in the range 0.016–0.067 μg/L (below European Union maximum residue limits) for the majority of the pesticides. In this work, MWCNTs were reused up to five times, representing an important reduction of the waste of stationary phase. Furthermore, DSPE permitted a clear diminution of the total sample treatment time with respect to conventional SPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ríos A, Escarpa A, Simonet B (2009) Miniaturization of analytical systems. Principles, designs and applications, Wiley

  2. Karlsson KE, Novotny M (1988) Anal Chem 60:1662–1665

    Article  CAS  Google Scholar 

  3. Hernández-Borges J, Aturki Z, Rocco A, Fanali S (2007) J Sep Sci 30:1589–1610

    Article  Google Scholar 

  4. Tao D, Zhang L, Shan Y, Liang Z (2011) Anal Bioanal Chem 399:229–241

    Article  CAS  Google Scholar 

  5. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  6. Trojanowicz M (2006) Trends Anal Chem 25:480–489

    Article  CAS  Google Scholar 

  7. Valcárcel M, Cárdenas S, Simonet BM (2007) Anal Chem 79:4788–4797

    Article  Google Scholar 

  8. Ravelo-Pérez LM, Herrera-Herrera AV, Hernández-Borges J, Rodríguez-Delgado MA (2010) J Chromatogr A 1217:2618–2641

    Article  Google Scholar 

  9. Pyrzynska K (2010) Trends Anal Chem 29:718–727

    Article  CAS  Google Scholar 

  10. Asensio-Ramos M, Hernández-Borges J, Ravelo-Pérez LM, Rodríguez-Delgado MA (2008) Electrophoresis 29:4412–4421

    Article  CAS  Google Scholar 

  11. Asensio-Ramos M, Hernández-Borges J, Borges-Miquel TM, Rodríguez-Delgado MA (2009) Anal Chim Acta 647:167–176

    Article  CAS  Google Scholar 

  12. Ravelo-Pérez LM, Hernández-Borges J, Rodríguez-Delgado MA (2008) J Sep Sci 31:3612–3619

    Article  Google Scholar 

  13. Tsai W-H, Huang T-C, Huang J-J, Hsue Y-H, Chuang H-Y (2009) J Chromatogr A 1216:2263–2269

    Article  CAS  Google Scholar 

  14. Lu Q, Chen X, Nie L, Jiang H, Chen L, Hu Q, Du S, Zhang Z (2010) Talanta 81:959–966

    Article  CAS  Google Scholar 

  15. Peng Y, Xie Y, Luo J, Nie L, Chen Y, Chen L, Du S, Zhang Z (2010) Anal Chim Acta 674:190–200

    Article  CAS  Google Scholar 

  16. Fanali S, Aturki Z, D’Orazio G, Rocco A (2007) J Chromatogr A 1150:252–258

    Article  CAS  Google Scholar 

  17. Buonasera K, D’Orazio G, Fanali S, Dugo P, Mondello L (2009) J Chromatogr A 1216:3970–3976

    Article  CAS  Google Scholar 

  18. D’Ascenzo G, Gentili A, Marchese S, Perret D (1998) J Chromatogr A 813:285–297

    Article  Google Scholar 

  19. Curini R, Gentili A, Marchese S, Marino A, Perret D (2000) J Chromatogr A 874:187–198

    Article  CAS  Google Scholar 

  20. D’Orazio G, Fanali S (2009) J Sep Sci 31:2567–2571

    Article  Google Scholar 

  21. Rosales-Conrado N, León-González ME, Pérez-Arribas LV, Polo-Díez LM (2005) J Chromatogr A 1076:202–206

    Article  CAS  Google Scholar 

  22. Tegeler T, El Rassi Z (2001) Anal Chem 73:3365–3372

    Article  CAS  Google Scholar 

  23. Ravelo-Pérez LM, Hernández-Borges J, Rodríguez-Delgado MA (2008) J Chromatogr A 1211:33–42

    Article  Google Scholar 

  24. Basheer C, Alnedhary AA, Rao BSM, Valliyaveettil S, Lee HK (2006) Anal Chem 78:2853–2858

    Article  CAS  Google Scholar 

  25. Laganà A, Fago G, Marino A (1998) J Chromatogr A 796:309–318

    Article  Google Scholar 

  26. Biesaga M, Pyrzynska K (2006) J Sep Sci 29:2241–2244

    Article  CAS  Google Scholar 

  27. Zhou Q, Ding Y, Xiao J (2007) Chromatographia 65:25–30

    Article  CAS  Google Scholar 

  28. Liang P, Liu Y, Zeng J, Lu H (2004) J Anal At Spectrom 10:1489–1492

    Article  Google Scholar 

  29. Liang P, Liu Y, Guo L (2005) Spectrochim Acta B 60:125–129

    Article  Google Scholar 

  30. Liang P, Zhao E, Ding Q, Du D (2008) Spectrochim Acta B 63:714–717

    Article  Google Scholar 

  31. Wu H, Wang X, Liu B, Liu Y, Li S, Lu J, Tian J, Zhao W, Yang Z (2011) Spectrochim Acta B 66:74–80

    Article  Google Scholar 

  32. López-Feria S, Cárdenas S, Valcárcel M (2009) J Chromatogr A 1216:7346–7350

    Article  Google Scholar 

  33. Basheer C, Alnedhary AA, Rao BSM, Lee HK (2009) J Chromatogr A 1216:211–216

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.A.R. wishes to thank the Spanish Ministry of Education for the FPU grant. J.H.B. wishes to thank the Spanish Ministry of Science and Innovation for the Ramón y Cajal contract at the University of La Laguna. M.A.R. would also like to thank Dr. S. Fanali for his helpful suggestions, as well as Dr. Z. Aturki for her help and support during the stay at the Institute of Chemical Methodologies of the CNR. Authors acknowledge Dr. M.A. Rodríguez-Delgado for his valuable comments and suggestions. This work has been supported by the Spanish Ministry of Science and Innovation (project AGL2009-07884/ALI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Fanali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asensio-Ramos, M., D’Orazio, G., Hernandez-Borges, J. et al. Multi-walled carbon nanotubes–dispersive solid-phase extraction combined with nano-liquid chromatography for the analysis of pesticides in water samples. Anal Bioanal Chem 400, 1113–1123 (2011). https://doi.org/10.1007/s00216-011-4885-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4885-7

Keywords

Navigation