Comparison of dispersive liquid–liquid microextraction and hollow fiber liquid–liquid–liquid microextraction for the determination of fentanyl, alfentanil, and sufentanil in water and biological fluids by high-performance liquid chromatography


Dispersive liquid–liquid microextraction (DLLME) and hollow fiber liquid–liquid–liquid microextraction (HF-LLLME) combined with HPLC–DAD have been applied for the determination of three narcotic drugs (alfentanil, fentanyl, and sufentanil) in biological samples (human plasma and urine). Different DLLME parameters influencing the extraction efficiency such as type and volume of the extraction solvent and the disperser solvent, concentration of NaOH, and salt addition were investigated. In the HF-LLLME, the effects of important parameters including organic solvent type, concentration of NaOH as donor solution, concentration of H2SO4 as acceptor phase, salt addition, stirring rate, temperature, and extraction time were investigated and optimized. The results showed that both extraction methods exhibited good linearity, precision, enrichment factor, and detection limit. Under optimal condition, the limits of detection ranged from 0.4 to 1.9 μg/L and from 1.1 to 2.3 μg/L for DLLME and HF-LLLME, respectively. For DLLME, the intra- and inter-day precisions were 1.7–6.4% and 14.2–15.9%, respectively; and for HF-LLLME were 0.7–5.2% and 3.3–10.1%, respectively. The enrichment factors were from 275 to 325 and 190 to 237 for DLLME and HF-LLLME, respectively. The applicability of the proposed methods was investigated by analyzing biological samples. For analysis of human plasma and urine samples, HF-LLLME showed higher precision, more effective sample clean-up, higher extraction efficiency, lower organic solvent consumption than DLLME.

Schematic diagram of dispersive liquid-liquid microextraction and hollow fiber liquid-liquid-liquid microextraction combined with liquid chromatography-diode array detection for the determination of fentanyl, alfentanil and sufentanil.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Janssen PAJ (1965) US Patent 3,164,600

  2. 2.

    Mather LE (1983) Clin Pharmacokinet 8:422–466

    Article  CAS  Google Scholar 

  3. 3.

    Clotz MA, Nahata MC (1991) Clin Pharm 10:581–593

    CAS  Google Scholar 

  4. 4.

    Raikos N, Theodoridis G, Alexiadou E, Gika H, Argiriadou H, Parlapani H, Tsoukali H (2009) J Sep Sci 32:1018–1026

    Article  CAS  Google Scholar 

  5. 5.

    Ebrahimzadeh H, Yamini Y, Gholizade A, Sedighi A, Kasraee S (2008) Anal Chim Acta 626:193–199

    Article  CAS  Google Scholar 

  6. 6.

    Wang C, Li E, Xu G, Wang H, Gong Y, Li P, Liu S, He Y (2009) Microchem J 91:149–152

    Article  CAS  Google Scholar 

  7. 7.

    Gupta PK, Manral L, Ganesan K, Dubey DK (2007) Anal BioanalChem 388:579–583

    Article  CAS  Google Scholar 

  8. 8.

    Van Nimmen NFJ, Poels KLC, Veulemans HAF (2004) J Chromatogr B 804:375–387

    Article  Google Scholar 

  9. 9.

    Dufresne C, Favetta P, Gonin R, Bureau J, Guitton J (2002) Anal Lett 35:1575–1590

    Article  CAS  Google Scholar 

  10. 10.

    Huynh NH, Tyrefors N, Ekman L, Johansson M (2005) J Pharm Biomed Anal 37:1095–1100

    Article  CAS  Google Scholar 

  11. 11.

    Guo H, Hu N, Lin S (1994) Talanta 41:1929–1932

    Article  CAS  Google Scholar 

  12. 12.

    Prosen H, Zupancíicí-Kralj L (1999) Trends Anal Chem 18:272–282

    Article  CAS  Google Scholar 

  13. 13.

    Pawliszyn J (1999) Applications of solid phase microextraction. The Royal Society of Chemistry, London

    Google Scholar 

  14. 14.

    Pinto MI, Sontag G, Bernardino RJ, Noronha JP (2010) Microchem J 96:225–237

    Article  CAS  Google Scholar 

  15. 15.

    Sarafraz-Yazdi A, Amiri A (2010) Trends Anal Chem 29:1–14

    Article  CAS  Google Scholar 

  16. 16.

    Hyötyläinen T, Riekkola ML (2008) Anal Chim Acta 614:27–37

    Article  Google Scholar 

  17. 17.

    Psillakis E, Kalogerakis N (2003) Trends Anal Chem 22:565–574

    Article  CAS  Google Scholar 

  18. 18.

    Rasmussen KE, Pedersen-Bjergaard S (2004) Trends Anal Chem 23:1–10

    Article  CAS  Google Scholar 

  19. 19.

    Pedersen-Bjergaard S, Rasmussen KE (2005) J Chromatogr B 817:3–12

    Article  CAS  Google Scholar 

  20. 20.

    Lee J, Lee HK, Rasmussen KE, Pedersen-Bjergaard S (2008) Anal Chim Acta 624:253–268

    Article  CAS  Google Scholar 

  21. 21.

    Kataoka H (2010) Anal BioanalChem 396:339–364

    Article  CAS  Google Scholar 

  22. 22.

    Herrera-Herrera AV, Asensio-Ramos M, Hernández-Borges J, Rodríguez-Delgado MÁ (2010) Trends Anal Chem 29:728–751

    Article  CAS  Google Scholar 

  23. 23.

    Ojeda CB, Rojas FS (2009) Chromatographia. doi:10.1365/s10337-009-1104-1

    Google Scholar 

  24. 24.

    Rezaee M, Yamini Y, Faraji M (2010) J Chromatogr A 1217:2342–2357

    Article  CAS  Google Scholar 

  25. 25.

    Zang XH, Wu QH, Zhang MY, Xi GH, Wang Z (2009) Chin J Anal Chem 37:161–168

    Article  CAS  Google Scholar 

  26. 26.

    Chen Y, Guo Z, Wang X, Qiu C (2008) J Chromatogr A 1184:191–219

    Article  CAS  Google Scholar 

  27. 27.

    Pedersen-Bjergaard S, Rasmussen KE (2008) J Chromatogr A 1184:132–142

    Article  CAS  Google Scholar 

  28. 28.

    Barri T, Jönsson JA (2008) J Chromatogr A 1186:16–38

    Article  CAS  Google Scholar 

  29. 29.

    Pedersen-Bjergaard S, Rasmussen KE (1999) Anal Chem 71:2650–2656

    Article  CAS  Google Scholar 

  30. 30.

    Rezaee M, Assadi Y, Milani-Hosseini MR, Aghaee E, Ahmadi F, Berijani S (2006) J Chromatogr A 1116:1–9

    Article  CAS  Google Scholar 

  31. 31.

    Melwanki MB, Chen WS, Bai HY, Lin TY, Fuh MR (2009) Talanta 78:618–622

    Article  CAS  Google Scholar 

  32. 32.

    Xiong C, Ruan J, Cai Y, Tang Y (2009) J Pharm Biomed Anal 49:572–578

    Article  CAS  Google Scholar 

  33. 33.

    Cunha SC, Fernandes JO (2010) Talanta 83:117–125

    Article  CAS  Google Scholar 

  34. 34.

    Lili L, Xu H, Song D, Cui Y, Hu S, Zhang G (2010) J Chromatogr A 1217:2365–2370

    Article  Google Scholar 

  35. 35.

    Sarafraz-Yazdi A, Razavi N, Raouf-Yazdinejad S (2008) Talanta 75:1293–1299

    Article  Google Scholar 

  36. 36.

    Rahnama-Kozani R, Assadi Y, Shemirani F, Milani-Hosseini MR, Jamali MR (2007) Talanta 72:387–393

    Article  Google Scholar 

  37. 37.

    Saraji M, Tansazan N (2009) J Sep Sci 32:4186–4192

    Article  CAS  Google Scholar 

  38. 38.

    Zhao L, Zhu L, Lee HK (2002) J Chromatogr A 963:239–248

    Article  CAS  Google Scholar 

  39. 39.

    Saraji M, Mousavi F (2010) Food Chem 123:1310–1317

    Article  CAS  Google Scholar 

  40. 40.

    Al-Azzam KM, Makahleah A, Saad B, Mansor SM (2010) J Chromatogr A 1217:3654–3659

    Article  CAS  Google Scholar 

  41. 41.

    Saaid M, Saad B, Mohamed-Ali AS, Idiris-Saleh M, Basheer C, Lee HK (2009) J Chromatogr A 1216:5165–5170

    Article  CAS  Google Scholar 

  42. 42.

    Li G, Zhang L, Zhang Z (2008) J Chromatogr A 1204:119–122

    Article  CAS  Google Scholar 

  43. 43.

    Esrafili A, Yamini Y, Shariati S (2007) Anal Chim Acta 604:127–133

    Article  CAS  Google Scholar 

  44. 44.

    Bagheri H, Es-haghi A, Khalilian F, Rouini MR (2007) J Pharm Biomed Anal 43:1763–1768

    Article  CAS  Google Scholar 

Download references


The authors wish to thank the Research Council of Isfahan University of Technology (IUT) and the Center of Excellence in Sensor and Green Chemistry for the financial support of this work.

Author information



Corresponding author

Correspondence to Mohammad Saraji.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Saraji, M., Khalili Boroujeni, M. & Hajialiakbari Bidgoli, A.A. Comparison of dispersive liquid–liquid microextraction and hollow fiber liquid–liquid–liquid microextraction for the determination of fentanyl, alfentanil, and sufentanil in water and biological fluids by high-performance liquid chromatography. Anal Bioanal Chem 400, 2149 (2011).

Download citation


  • Dispersive liquid–liquid microextraction
  • Hollow fiber liquid–liquid–liquid microextraction
  • Liquid chromatography
  • Human plasma and urine
  • Narcotic drugs