Skip to main content
Log in

Micro-solid phase equilibrium extraction with highly ordered TiO2 nanotube arrays: a new approach for the enrichment and measurement of organochlorine pesticides at trace level in environmental water samples

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ordered TiO2 nanotube arrays have been widely used in many fields such as photocatalysis, self-cleaning, solar cells, gas sensing, and catalysis. This present study exploited a new functional application of the ordered TiO2 nanotube arrays. A micro-solid phase equilibrium extraction using ordered TiO2 nanotube arrays was developed for the enrichment and measurement of organochlorine pesticides prior to gas chromatography-electron capture detection. Ordered TiO2 nanotube arrays exhibited excellent merits on the pre-concentration of organochlorine pesticides and lower detection limits of 0.10, 0.10, 0.10, 0.098, 0.0076, 0.0097, 0.016, and 0.023 μg L−1 for α-HCH, β-HCH, γ-HCH, δ-HCH, p,p’-DDE, p,p’-DDD, o,p’-DDT, and p,p’-DDT, respectively, were achieved. Four real water samples were used for validation, and the spiked recoveries were in the range of 78–102.8%. These results demonstrated that the developed micro-solid phase equilibrium extraction using ordered TiO2 nanotube arrays would be very constructive and have a great beginning with a brand new prospect in the analysis of environmental pollutants.

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Linsebigle AL, Lu GQ, Yates JT (1995) Chem Rev 95:735–758

    Article  Google Scholar 

  2. Liaw WC, Chen KP (2007) Eur Polym J 43:2265–2278

    Article  CAS  Google Scholar 

  3. Verma A, Kar M, Agnihotry SA (2007) Sol Energ Mat Sol C 91:1305–1312

    Article  CAS  Google Scholar 

  4. Wang C, Deng ZX, Li YD (2001) Inorg Chem 40:5210–5214

    Article  CAS  Google Scholar 

  5. Koenenkamp R, Henninger R, Hoyer P (1993) J Phys Chem 97:7328–7330

    Article  CAS  Google Scholar 

  6. Wang YQ, Hu GQ, Duan XF, Sun HL, Xue QK (2002) Chem Phys Lett 365:427–431

    Article  CAS  Google Scholar 

  7. Lakshmi BB, Patrissi CJ, Martin CR (1997) Chem Mater 9:2544–2550

    Article  CAS  Google Scholar 

  8. Miao Z, Xu D, Ouyang J, Guo G, Zhao X, Tang Y (2002) Nano Lett 2:717–720

    Article  CAS  Google Scholar 

  9. Zwilling V, Aucouturier M, Darque-Ceretti E (1999) Electrochim Acta 45:921–929

    Article  CAS  Google Scholar 

  10. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes C (2006) Nano Lett 6:215–218

    Article  CAS  Google Scholar 

  11. Raja KS, Misra M, Mahajan VK, Gandhi T, Pillai P, Mohapatra SK (2006) J Power Sources 161:1450–1457

    Article  CAS  Google Scholar 

  12. Raja KS, Mahajan VK, Misra M (2006) J Power Sources 159:1258–1265

    Article  CAS  Google Scholar 

  13. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2005) Nano Lett 5:191–195

    Article  CAS  Google Scholar 

  14. Paulose M, Mor GK, Varghese OK, Shankar K, Grimes CA (2006) J Photochem Photobiol A 178:8–15

    Article  CAS  Google Scholar 

  15. Varghese OK, Paulose M, Shankar K, Mor GK, Grimes CA (2005) J Nanosci Nanotech 5:1158–1165

    Article  CAS  Google Scholar 

  16. Macak JM, Tsuchiya H, Ghicov A, Schmuki P (2005) Electrochem Commun 7:1133–1137

    Article  CAS  Google Scholar 

  17. Zhu K, Neale NR, Miedaner A, Frank A (2007) Nano Lett 7:69–74

    Article  CAS  Google Scholar 

  18. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) Sol Energy Mater Sol Cells 90:2011–2075

    Article  CAS  Google Scholar 

  19. Pillai P, Raja KS, Misra M (2006) J Power Sources 161:524–530

    Article  CAS  Google Scholar 

  20. Grimes CA (2007) J Mater Chem 17:1451–1457

    Article  CAS  Google Scholar 

  21. Mor GK, Varghese OK, Paulose M, Grimes CA (2003) Sens Lett 1:42–46

    Article  CAS  Google Scholar 

  22. Varghese OK, Gong D, Paulose M, Ong KG, Dickey EC, Grimes CA (2003) Adv Mater 15:624–627

    Article  CAS  Google Scholar 

  23. Gandhi T, Raja KS, Misra M (2006) Electrochim Acta 51:5932–5942

    Article  CAS  Google Scholar 

  24. Raja KS, Misra M, Paramguru K (2005) Mater Lett 59:2137–2141

    Article  CAS  Google Scholar 

  25. Kar A, Raja KS, Misra M (2006) Surf Coat Technol 201:3723–3731

    Article  CAS  Google Scholar 

  26. Macak JM, Tsuchiya H, Taveria L, Ghicov A, Schmuki P (2005) J Biomed Mater Res A 75:928–933

    Google Scholar 

  27. Macak JM, Tsuchiya H, Bauer S, Ghicov A, Schmuki P, Barczuk PJ, Nowakowska MZ, Chojak M, Kulesza PJ (2005) Electrochem Commun 7:1417–1422

    Article  CAS  Google Scholar 

  28. Quan X, Yang S, Ruan X, Zhao H (2005) Environ Sci Technol 39:3770–3775

    Article  CAS  Google Scholar 

  29. Quan X, Ruan X, Zhao H, Chen S, Zhao Y (2007) Environ Pollut 147:409–414

    Article  CAS  Google Scholar 

  30. Zhang Z, Yuan Y, Shi G, Fang Y, Liang L, Ding H, Jin L (2007) Environ Sci Technol 41:6259–6263

    Article  CAS  Google Scholar 

  31. Lu N, Quan X, Li J, Chen S, Yu H, Chen G (2007) J Phys Chem C 111:11836–11842

    Article  CAS  Google Scholar 

  32. Liu Z, Zhang X, Nishimoto S, Jin M, Tryk DA, Murakami T, Fujishima A (2008) J Phys Chem C 112:253–259

    Article  CAS  Google Scholar 

  33. U. S. Environmental Protection Agency, http://www.epa.gov/opptintr/pbt/cheminfo.htm

  34. Qiu XH, Zhu T, Wang F, Hu JX (2008) Environ Sci Technol 42:1928–1932

    Article  CAS  Google Scholar 

  35. Bustnes J, Yiccoz N, Bangjord G, Polder A, Skaare JU (2007) Environ Sci Technol 41:8491–8497

    Article  CAS  Google Scholar 

  36. Zhang G, Chakraborty P, Li J, Sampathkumar P, Balasubramanian T, Kathiresan K, Takahashi S, Subramanian A, Tanabe S, Jones KC (2008) Environ Sci Technol 42:8218–8223

    Article  CAS  Google Scholar 

  37. Huang SP, Huang SD (2007) J Chromatogr A 1176:19–25

    Article  CAS  Google Scholar 

  38. Cortada C, Vidalb L, Pastora R, Santiagoa N, Canalsb A (2009) Anal Chim Acta 649:218–221

    Article  CAS  Google Scholar 

  39. Tsai W, Huang S (2009) J Chromatogr A 1216:5171–5175

    Article  CAS  Google Scholar 

  40. Kima M, Kanga TW, Pyob H, Yoonc J, Choic K, Honga J (2008) J Chromatogr A 1208:25–33

    Article  Google Scholar 

  41. Fidalgo-Used N, Montes-Bayón M, Blanco-González E, Sanz-Medel A (2008) Talanta 75:710–716

    Article  CAS  Google Scholar 

  42. Dong C, Zeng Z, Li X (2005) Talanta 66:721–727

    Article  CAS  Google Scholar 

  43. Liu H, Liu G, Zhou Q (2009) J Solid State Chem 182:3238–3242

    Article  CAS  Google Scholar 

  44. Zhou QX, Ding YJ, Xiao JP, Liu GG, Guo XY (2007) J Chromatogr A 1147:10–16

    Article  CAS  Google Scholar 

  45. Zhou QX, Pang L, Xiao JP (2009) J Chromatogr A 1216:6680–6684

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (20877022), the Natural Science Foundation of Henan Province (082102350022), and the Personal Innovation Foundation of Universities in Henan Province ([2005]126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingxiang Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 224 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Q., Huang, Y., Xiao, J. et al. Micro-solid phase equilibrium extraction with highly ordered TiO2 nanotube arrays: a new approach for the enrichment and measurement of organochlorine pesticides at trace level in environmental water samples. Anal Bioanal Chem 400, 205–212 (2011). https://doi.org/10.1007/s00216-011-4788-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4788-7

Keywords

Navigation