Analytical and Bioanalytical Chemistry

, Volume 400, Issue 1, pp 205–212 | Cite as

Micro-solid phase equilibrium extraction with highly ordered TiO2 nanotube arrays: a new approach for the enrichment and measurement of organochlorine pesticides at trace level in environmental water samples

  • Qingxiang Zhou
  • Yunrui Huang
  • Junping Xiao
  • Guohong Xie
Paper in Forefront


Ordered TiO2 nanotube arrays have been widely used in many fields such as photocatalysis, self-cleaning, solar cells, gas sensing, and catalysis. This present study exploited a new functional application of the ordered TiO2 nanotube arrays. A micro-solid phase equilibrium extraction using ordered TiO2 nanotube arrays was developed for the enrichment and measurement of organochlorine pesticides prior to gas chromatography-electron capture detection. Ordered TiO2 nanotube arrays exhibited excellent merits on the pre-concentration of organochlorine pesticides and lower detection limits of 0.10, 0.10, 0.10, 0.098, 0.0076, 0.0097, 0.016, and 0.023 μg L−1 for α-HCH, β-HCH, γ-HCH, δ-HCH, p,p’-DDE, p,p’-DDD, o,p’-DDT, and p,p’-DDT, respectively, were achieved. Four real water samples were used for validation, and the spiked recoveries were in the range of 78–102.8%. These results demonstrated that the developed micro-solid phase equilibrium extraction using ordered TiO2 nanotube arrays would be very constructive and have a great beginning with a brand new prospect in the analysis of environmental pollutants.


Ordered TiO2 nanotube array Organochlorine pesticides Micro-solid phase equilibrium extraction Gas chromatography-electron capture detection 



This work was supported by the Natural Science Foundation of China (20877022), the Natural Science Foundation of Henan Province (082102350022), and the Personal Innovation Foundation of Universities in Henan Province ([2005]126).

Supplementary material

216_2011_4788_MOESM1_ESM.pdf (224 kb)
ESM 1 (PDF 224 kb)


  1. 1.
    Linsebigle AL, Lu GQ, Yates JT (1995) Chem Rev 95:735–758CrossRefGoogle Scholar
  2. 2.
    Liaw WC, Chen KP (2007) Eur Polym J 43:2265–2278CrossRefGoogle Scholar
  3. 3.
    Verma A, Kar M, Agnihotry SA (2007) Sol Energ Mat Sol C 91:1305–1312CrossRefGoogle Scholar
  4. 4.
    Wang C, Deng ZX, Li YD (2001) Inorg Chem 40:5210–5214CrossRefGoogle Scholar
  5. 5.
    Koenenkamp R, Henninger R, Hoyer P (1993) J Phys Chem 97:7328–7330CrossRefGoogle Scholar
  6. 6.
    Wang YQ, Hu GQ, Duan XF, Sun HL, Xue QK (2002) Chem Phys Lett 365:427–431CrossRefGoogle Scholar
  7. 7.
    Lakshmi BB, Patrissi CJ, Martin CR (1997) Chem Mater 9:2544–2550CrossRefGoogle Scholar
  8. 8.
    Miao Z, Xu D, Ouyang J, Guo G, Zhao X, Tang Y (2002) Nano Lett 2:717–720CrossRefGoogle Scholar
  9. 9.
    Zwilling V, Aucouturier M, Darque-Ceretti E (1999) Electrochim Acta 45:921–929CrossRefGoogle Scholar
  10. 10.
    Mor GK, Shankar K, Paulose M, Varghese OK, Grimes C (2006) Nano Lett 6:215–218CrossRefGoogle Scholar
  11. 11.
    Raja KS, Misra M, Mahajan VK, Gandhi T, Pillai P, Mohapatra SK (2006) J Power Sources 161:1450–1457CrossRefGoogle Scholar
  12. 12.
    Raja KS, Mahajan VK, Misra M (2006) J Power Sources 159:1258–1265CrossRefGoogle Scholar
  13. 13.
    Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2005) Nano Lett 5:191–195CrossRefGoogle Scholar
  14. 14.
    Paulose M, Mor GK, Varghese OK, Shankar K, Grimes CA (2006) J Photochem Photobiol A 178:8–15CrossRefGoogle Scholar
  15. 15.
    Varghese OK, Paulose M, Shankar K, Mor GK, Grimes CA (2005) J Nanosci Nanotech 5:1158–1165CrossRefGoogle Scholar
  16. 16.
    Macak JM, Tsuchiya H, Ghicov A, Schmuki P (2005) Electrochem Commun 7:1133–1137CrossRefGoogle Scholar
  17. 17.
    Zhu K, Neale NR, Miedaner A, Frank A (2007) Nano Lett 7:69–74CrossRefGoogle Scholar
  18. 18.
    Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) Sol Energy Mater Sol Cells 90:2011–2075CrossRefGoogle Scholar
  19. 19.
    Pillai P, Raja KS, Misra M (2006) J Power Sources 161:524–530CrossRefGoogle Scholar
  20. 20.
    Grimes CA (2007) J Mater Chem 17:1451–1457CrossRefGoogle Scholar
  21. 21.
    Mor GK, Varghese OK, Paulose M, Grimes CA (2003) Sens Lett 1:42–46CrossRefGoogle Scholar
  22. 22.
    Varghese OK, Gong D, Paulose M, Ong KG, Dickey EC, Grimes CA (2003) Adv Mater 15:624–627CrossRefGoogle Scholar
  23. 23.
    Gandhi T, Raja KS, Misra M (2006) Electrochim Acta 51:5932–5942CrossRefGoogle Scholar
  24. 24.
    Raja KS, Misra M, Paramguru K (2005) Mater Lett 59:2137–2141CrossRefGoogle Scholar
  25. 25.
    Kar A, Raja KS, Misra M (2006) Surf Coat Technol 201:3723–3731CrossRefGoogle Scholar
  26. 26.
    Macak JM, Tsuchiya H, Taveria L, Ghicov A, Schmuki P (2005) J Biomed Mater Res A 75:928–933Google Scholar
  27. 27.
    Macak JM, Tsuchiya H, Bauer S, Ghicov A, Schmuki P, Barczuk PJ, Nowakowska MZ, Chojak M, Kulesza PJ (2005) Electrochem Commun 7:1417–1422CrossRefGoogle Scholar
  28. 28.
    Quan X, Yang S, Ruan X, Zhao H (2005) Environ Sci Technol 39:3770–3775CrossRefGoogle Scholar
  29. 29.
    Quan X, Ruan X, Zhao H, Chen S, Zhao Y (2007) Environ Pollut 147:409–414CrossRefGoogle Scholar
  30. 30.
    Zhang Z, Yuan Y, Shi G, Fang Y, Liang L, Ding H, Jin L (2007) Environ Sci Technol 41:6259–6263CrossRefGoogle Scholar
  31. 31.
    Lu N, Quan X, Li J, Chen S, Yu H, Chen G (2007) J Phys Chem C 111:11836–11842CrossRefGoogle Scholar
  32. 32.
    Liu Z, Zhang X, Nishimoto S, Jin M, Tryk DA, Murakami T, Fujishima A (2008) J Phys Chem C 112:253–259CrossRefGoogle Scholar
  33. 33.
    U. S. Environmental Protection Agency,
  34. 34.
    Qiu XH, Zhu T, Wang F, Hu JX (2008) Environ Sci Technol 42:1928–1932CrossRefGoogle Scholar
  35. 35.
    Bustnes J, Yiccoz N, Bangjord G, Polder A, Skaare JU (2007) Environ Sci Technol 41:8491–8497CrossRefGoogle Scholar
  36. 36.
    Zhang G, Chakraborty P, Li J, Sampathkumar P, Balasubramanian T, Kathiresan K, Takahashi S, Subramanian A, Tanabe S, Jones KC (2008) Environ Sci Technol 42:8218–8223CrossRefGoogle Scholar
  37. 37.
    Huang SP, Huang SD (2007) J Chromatogr A 1176:19–25CrossRefGoogle Scholar
  38. 38.
    Cortada C, Vidalb L, Pastora R, Santiagoa N, Canalsb A (2009) Anal Chim Acta 649:218–221CrossRefGoogle Scholar
  39. 39.
    Tsai W, Huang S (2009) J Chromatogr A 1216:5171–5175CrossRefGoogle Scholar
  40. 40.
    Kima M, Kanga TW, Pyob H, Yoonc J, Choic K, Honga J (2008) J Chromatogr A 1208:25–33CrossRefGoogle Scholar
  41. 41.
    Fidalgo-Used N, Montes-Bayón M, Blanco-González E, Sanz-Medel A (2008) Talanta 75:710–716CrossRefGoogle Scholar
  42. 42.
    Dong C, Zeng Z, Li X (2005) Talanta 66:721–727CrossRefGoogle Scholar
  43. 43.
    Liu H, Liu G, Zhou Q (2009) J Solid State Chem 182:3238–3242CrossRefGoogle Scholar
  44. 44.
    Zhou QX, Ding YJ, Xiao JP, Liu GG, Guo XY (2007) J Chromatogr A 1147:10–16CrossRefGoogle Scholar
  45. 45.
    Zhou QX, Pang L, Xiao JP (2009) J Chromatogr A 1216:6680–6684CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Qingxiang Zhou
    • 1
    • 2
  • Yunrui Huang
    • 1
  • Junping Xiao
    • 3
  • Guohong Xie
    • 4
  1. 1.Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Ministry of Education, School of Chemistry and Environmental SciencesHenan Normal UniversityXinxiangChina
  2. 2.State Laboratory of Petroleum Resource and Prospecting, Key Laboratory of Earth Prospecting and Information Technology, College of GeosciencesChina University of Petroleum BeijingBeijingChina
  3. 3.Department of ChemistryUniversity of Science and Technology BeijingBeijingChina
  4. 4.College of Resources and EnvironmentHenan Institute of Science and TechnologyXinxiangChina

Personalised recommendations