Abstract
The determination of the molecular mass distribution of tannins is still a challenge. To elucidate it, mass spectrometry is potentially interesting, but many previous studies have highlighted that the mass spectra of a tannin fraction do not always reflect the actual abundance of different chain lengths. To clarify the potentialities offered by the MS approach, a comprehensive study involving different tannin fractions analysed under different conditions was conducted with an electrospray ionization (ESI) source. This study allowed optimised ESI-MS conditions to be established for analysing tannins but also it outlines the limits of detection encountered. If the detection of high molecular weight tannins seems difficult or even impossible, the spectral distortions brought about by this limitation are not totally related to the sole average degree of polymerisation of the tannin fraction studied but greatly depend on its polymer distribution. However, ESI-MS used under optimised conditions is a suitable method to study tannin composition of vegetable extracts which contain degree of polymerisations below 26.




Similar content being viewed by others
References
Fulcrand H, Guyot S, Le Roux E, Remy S, Souquet J-M, Doco T, Cheynier V (1999) In: Gross (ed) Plant polyphenols 2: chemistry, biology, pharmacology, ecology. Springer, Berlin, pp 223–244
Zanchi D, Konarev PV, Tribet C, Baron A, Svergun DI, Guyot S (2009) Rigidity, conformation, and solvation of native and oxidized tannin macromolecules in water-ethanol solution. J Chem Phys 130:245103
Haslam E, Lilley TH (1988) Natural astringency in foodstuffs – a molecular interpretation. Crit Rev Food Sci Nutr 27:1–40
Cao G, Russell RM, Lischner N, Prior RL (1998) Serum antioxidant capacity is increased by consumption of strawberries, spinach, red wine or vitamin C in elderly women. J Nutr 128:2383–2390
Young JF, Nielsen SE, Haraldsdottir J, Daneshvar B, Lauridsen ST, Knuthsen P, Crozie A, Sandstrom B, Dragsted LO (1999) Effect of fruit juice intake on urinary quercetin excretion and biomarkers of antioxidative status. Am J Clin Nutr 69:87–94
Rein D, Lotito S, Holt RR, Keen CL, Schmitz HH, Fraga CG (2000) Epicatechin in human plasma: In vivo determination and effect of chocolate consumption on plasma oxidation status. J Nutr 130:2109S–2114S
Koga T, Meydani M (2001) Effect of plasma metabolites of (+)-catechin and quercetin on monocyte adhesion to human aortic endothelial cells. Am J Clin Nutr 73:941–948
Kennedy JA, Taylor AW (2003) Analysis of proanthocyanidins by high-performance gel permeation chromatography. J Chromatogr A 995:99–107
Rigaud J, Perez-Ilzarbe J, Ricardo Da Silva JM, Cheynier V (1991) Micro method for the identification of proanthocyanidin using thiolysis monitored by high-performance liquid-chromatography. J Chromatogr 540:401–405
Telepchack MJ (1973) New uses for molecular-size exclusion chromatography. J Chromatogr 83:125–134
Kasai N, Nakatsubo G (2006) Size-exclusion chromatography of tea tannins and intercepting potentials of peptides for the inhibition of trypsin-caseinolytic activity by tea tannins. J Agric Food Chem 54:5149–5156
Ikegami A, Sato A, Yamado M, Kitajuma A, Yonemori K (2005) Molecular size profiles of tannins in persimmon fruits of Japanese and Chinese pollination-constant non-astringent (PCNA)-type cultivars and their offspring revealed by size-exclusion chromatography. J Japan Soc Hort Sci 74:437–443
Kaufman RC, Tilley M, Bean SR, Tuinstra MR (2009) Improved characterization of sorghum tannins using size-exclusion chromatography. Cereal Chem 86:369–371
Viriot C, Scalbert A, Dupenhoat CLMH, Rolando C, Moutounet M (1994) Methylation, acetylation and gel-permeation of hydrolysable tannins. J Chromatogr A 662:77–85
Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for masse-spectrometry of large biomolecules. Sci 246:64–71
Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal Chem 60:2299–2301
Hammerstone JF, Lazarus SA, Mitchell AE, Rucker R, Schmitz HH (1999) Identification of procyanidins in cocoa (Theobroma cacao) and chocolate using high-performance liquid chromatography mass spectrometry. J Agric Food Chem 47:490–496
Peng Z, Hayasaka Y, Iland PG, Sefton M, Hoj P, Waters EJ (2001) Quantitative analysis of polymeric procyanidins (tannins) from grape (Vitis vinifera) seeds by reverse phase high performance liquid chromatography. J Agric Food Chem 49:26–31
Hümmer W, Schreier P (2008) Analysis of proanthocyanidins. Mol Nutr Food Res 52:1381–1398
Taylor AW, Barofsky E, Kennedy JA, Deinzer ML (2003) Hop (Humulus lupulus L) proanthocyanidins characterized by mass spectrometry, acid catalysis, and gel permeation chromatography. J Agric Food Chem 51:4101–4110
Ishida Y, Kuniyuki K, Goto K, Ohtani H (2005) Solid sampling technique for direct detection of condensed tannins in bark by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 19:706–710
Ping X, Yiming L, Peng L, Cheng X (2006) Effects of adduct ions on matrix-assisted laser desorption/ionization time of flight mass spectrometry of condensed tannins: a prerequisite knowledge. Chinese J Anal Chem 34:1019–1022
Mané C, Sommerer N, Yalcin T, Cheynier V, Cole RB, Fulcrand H (2007) Assessment of the molecular weight distribution of tannin fractions through MALDI-TOF MS analysis of protein-tannin complexes. Anal Chem 79:2239–2248
Es-Safi N-E, Guyot S, Ducrot PH (2006) NMR, ESI/MS, and MALDI-TOF/MS analysis of pear juice polymeric proanthocyanidins with potent free radical scavenging activity. J Agric Food Chem 54:6969–6977
Guyot S, Marnet N, Sanoner P, Drilleau J-F (2003) Variability of the polyphenolic composition of cider apple (Malus domestica) fruits and juices. J Agric Food Chem 51:6240–6247
Derdelinckx G, Jerumanis J (1984) Separation of malt and hop proanthocyanidins on Fractogel TSK HW-40 (S). J Chromatogr 285:231–244
Ricardo Da Silva J, Rigaud J, Cheynier V, Cheminat A, Moutounet M (1991) Procyanidin dimers and trimers from grape seeds. Phytochem 30:1259–1264
Guyot S, Marnet N, Drilleau J-F (2001) Thiolysis-HPLC characterization of apple procyanidins covering a large range of polymerization states. J Agric Food Chem 49:14–20
Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639
Sanoner P, Guyot S, Marnet N, Molle D, Drilleau J-F (1999) Polyphenol profiles of French cider apple varieties (Malus domestica sp). J Agric Food Chem 47:4847–4853
Guyot S, Doco T, Souquet J-M, Moutounet M, Drilleau J-F Phytochem (1997) Characterization of highly polymerized procyanidins in cider apple (Malus sylvestris var kermerrien) skin and pulp. 44:351-357
Gu L, Kelm MA, Hammerstone JF, Beecher G, Holden J, Haytowitz D, Prior RL (2003) Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation. J Agric Food Chem 51:7513–7521
Prior RL, Gu L (2005) Occurrence and biological significance of proanthocyanidins in the American diet. Phytochem 66:2264–2280
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(PDF 499 kb)
Rights and permissions
About this article
Cite this article
Mouls, L., Mazauric, JP., Sommerer, N. et al. Comprehensive study of condensed tannins by ESI mass spectrometry: average degree of polymerisation and polymer distribution determination from mass spectra. Anal Bioanal Chem 400, 613–623 (2011). https://doi.org/10.1007/s00216-011-4751-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00216-011-4751-7


