Skip to main content

Advertisement

Log in

Comprehensive study of condensed tannins by ESI mass spectrometry: average degree of polymerisation and polymer distribution determination from mass spectra

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The determination of the molecular mass distribution of tannins is still a challenge. To elucidate it, mass spectrometry is potentially interesting, but many previous studies have highlighted that the mass spectra of a tannin fraction do not always reflect the actual abundance of different chain lengths. To clarify the potentialities offered by the MS approach, a comprehensive study involving different tannin fractions analysed under different conditions was conducted with an electrospray ionization (ESI) source. This study allowed optimised ESI-MS conditions to be established for analysing tannins but also it outlines the limits of detection encountered. If the detection of high molecular weight tannins seems difficult or even impossible, the spectral distortions brought about by this limitation are not totally related to the sole average degree of polymerisation of the tannin fraction studied but greatly depend on its polymer distribution. However, ESI-MS used under optimised conditions is a suitable method to study tannin composition of vegetable extracts which contain degree of polymerisations below 26.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fulcrand H, Guyot S, Le Roux E, Remy S, Souquet J-M, Doco T, Cheynier V (1999) In: Gross (ed) Plant polyphenols 2: chemistry, biology, pharmacology, ecology. Springer, Berlin, pp 223–244

    Google Scholar 

  2. Zanchi D, Konarev PV, Tribet C, Baron A, Svergun DI, Guyot S (2009) Rigidity, conformation, and solvation of native and oxidized tannin macromolecules in water-ethanol solution. J Chem Phys 130:245103

    Article  Google Scholar 

  3. Haslam E, Lilley TH (1988) Natural astringency in foodstuffs – a molecular interpretation. Crit Rev Food Sci Nutr 27:1–40

    Article  CAS  Google Scholar 

  4. Cao G, Russell RM, Lischner N, Prior RL (1998) Serum antioxidant capacity is increased by consumption of strawberries, spinach, red wine or vitamin C in elderly women. J Nutr 128:2383–2390

    CAS  Google Scholar 

  5. Young JF, Nielsen SE, Haraldsdottir J, Daneshvar B, Lauridsen ST, Knuthsen P, Crozie A, Sandstrom B, Dragsted LO (1999) Effect of fruit juice intake on urinary quercetin excretion and biomarkers of antioxidative status. Am J Clin Nutr 69:87–94

    CAS  Google Scholar 

  6. Rein D, Lotito S, Holt RR, Keen CL, Schmitz HH, Fraga CG (2000) Epicatechin in human plasma: In vivo determination and effect of chocolate consumption on plasma oxidation status. J Nutr 130:2109S–2114S

    CAS  Google Scholar 

  7. Koga T, Meydani M (2001) Effect of plasma metabolites of (+)-catechin and quercetin on monocyte adhesion to human aortic endothelial cells. Am J Clin Nutr 73:941–948

    CAS  Google Scholar 

  8. Kennedy JA, Taylor AW (2003) Analysis of proanthocyanidins by high-performance gel permeation chromatography. J Chromatogr A 995:99–107

    Article  CAS  Google Scholar 

  9. Rigaud J, Perez-Ilzarbe J, Ricardo Da Silva JM, Cheynier V (1991) Micro method for the identification of proanthocyanidin using thiolysis monitored by high-performance liquid-chromatography. J Chromatogr 540:401–405

    Article  CAS  Google Scholar 

  10. Telepchack MJ (1973) New uses for molecular-size exclusion chromatography. J Chromatogr 83:125–134

    Article  Google Scholar 

  11. Kasai N, Nakatsubo G (2006) Size-exclusion chromatography of tea tannins and intercepting potentials of peptides for the inhibition of trypsin-caseinolytic activity by tea tannins. J Agric Food Chem 54:5149–5156

    Article  CAS  Google Scholar 

  12. Ikegami A, Sato A, Yamado M, Kitajuma A, Yonemori K (2005) Molecular size profiles of tannins in persimmon fruits of Japanese and Chinese pollination-constant non-astringent (PCNA)-type cultivars and their offspring revealed by size-exclusion chromatography. J Japan Soc Hort Sci 74:437–443

    Article  CAS  Google Scholar 

  13. Kaufman RC, Tilley M, Bean SR, Tuinstra MR (2009) Improved characterization of sorghum tannins using size-exclusion chromatography. Cereal Chem 86:369–371

    Article  CAS  Google Scholar 

  14. Viriot C, Scalbert A, Dupenhoat CLMH, Rolando C, Moutounet M (1994) Methylation, acetylation and gel-permeation of hydrolysable tannins. J Chromatogr A 662:77–85

    Article  CAS  Google Scholar 

  15. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for masse-spectrometry of large biomolecules. Sci 246:64–71

    Article  CAS  Google Scholar 

  16. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal Chem 60:2299–2301

    Article  CAS  Google Scholar 

  17. Hammerstone JF, Lazarus SA, Mitchell AE, Rucker R, Schmitz HH (1999) Identification of procyanidins in cocoa (Theobroma cacao) and chocolate using high-performance liquid chromatography mass spectrometry. J Agric Food Chem 47:490–496

    Article  CAS  Google Scholar 

  18. Peng Z, Hayasaka Y, Iland PG, Sefton M, Hoj P, Waters EJ (2001) Quantitative analysis of polymeric procyanidins (tannins) from grape (Vitis vinifera) seeds by reverse phase high performance liquid chromatography. J Agric Food Chem 49:26–31

    Article  CAS  Google Scholar 

  19. Hümmer W, Schreier P (2008) Analysis of proanthocyanidins. Mol Nutr Food Res 52:1381–1398

    Article  Google Scholar 

  20. Taylor AW, Barofsky E, Kennedy JA, Deinzer ML (2003) Hop (Humulus lupulus L) proanthocyanidins characterized by mass spectrometry, acid catalysis, and gel permeation chromatography. J Agric Food Chem 51:4101–4110

    Article  CAS  Google Scholar 

  21. Ishida Y, Kuniyuki K, Goto K, Ohtani H (2005) Solid sampling technique for direct detection of condensed tannins in bark by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 19:706–710

    Article  CAS  Google Scholar 

  22. Ping X, Yiming L, Peng L, Cheng X (2006) Effects of adduct ions on matrix-assisted laser desorption/ionization time of flight mass spectrometry of condensed tannins: a prerequisite knowledge. Chinese J Anal Chem 34:1019–1022

    Article  Google Scholar 

  23. Mané C, Sommerer N, Yalcin T, Cheynier V, Cole RB, Fulcrand H (2007) Assessment of the molecular weight distribution of tannin fractions through MALDI-TOF MS analysis of protein-tannin complexes. Anal Chem 79:2239–2248

    Article  Google Scholar 

  24. Es-Safi N-E, Guyot S, Ducrot PH (2006) NMR, ESI/MS, and MALDI-TOF/MS analysis of pear juice polymeric proanthocyanidins with potent free radical scavenging activity. J Agric Food Chem 54:6969–6977

    Article  CAS  Google Scholar 

  25. Guyot S, Marnet N, Sanoner P, Drilleau J-F (2003) Variability of the polyphenolic composition of cider apple (Malus domestica) fruits and juices. J Agric Food Chem 51:6240–6247

    Article  CAS  Google Scholar 

  26. Derdelinckx G, Jerumanis J (1984) Separation of malt and hop proanthocyanidins on Fractogel TSK HW-40 (S). J Chromatogr 285:231–244

    Article  CAS  Google Scholar 

  27. Ricardo Da Silva J, Rigaud J, Cheynier V, Cheminat A, Moutounet M (1991) Procyanidin dimers and trimers from grape seeds. Phytochem 30:1259–1264

    Article  CAS  Google Scholar 

  28. Guyot S, Marnet N, Drilleau J-F (2001) Thiolysis-HPLC characterization of apple procyanidins covering a large range of polymerization states. J Agric Food Chem 49:14–20

    Article  CAS  Google Scholar 

  29. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  30. Sanoner P, Guyot S, Marnet N, Molle D, Drilleau J-F (1999) Polyphenol profiles of French cider apple varieties (Malus domestica sp). J Agric Food Chem 47:4847–4853

    Article  CAS  Google Scholar 

  31. Guyot S, Doco T, Souquet J-M, Moutounet M, Drilleau J-F Phytochem (1997) Characterization of highly polymerized procyanidins in cider apple (Malus sylvestris var kermerrien) skin and pulp. 44:351-357

  32. Gu L, Kelm MA, Hammerstone JF, Beecher G, Holden J, Haytowitz D, Prior RL (2003) Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation. J Agric Food Chem 51:7513–7521

    Article  CAS  Google Scholar 

  33. Prior RL, Gu L (2005) Occurrence and biological significance of proanthocyanidins in the American diet. Phytochem 66:2264–2280

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laetitia Mouls.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 499 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mouls, L., Mazauric, JP., Sommerer, N. et al. Comprehensive study of condensed tannins by ESI mass spectrometry: average degree of polymerisation and polymer distribution determination from mass spectra. Anal Bioanal Chem 400, 613–623 (2011). https://doi.org/10.1007/s00216-011-4751-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4751-7

Keywords