Skip to main content

Advertisement

Log in

Determination of cocaine on banknotes through an aptamer-based electrochemiluminescence biosensor

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel electrochemiluminescence (ECL) “sandwich” biosensor has been developed to detect cocaine. The sandwich biosensor was fabricated on the basis of the fact that a single aptamer could be split into two fragments and the two dissociated parts could form a folded, associated complex in the presence of targets. One of these (capture probe), which had hexane–thiol at its 5′-terminus, was immobilized on a gold electrode via thiol–gold binding. The other one (detection probe) was labeled with the ECL reagent tris(2,2′-bipyridyl)ruthenium(II)-doped silica nanoparticles (RuSiNPs) at its 3′-terminus. Owing to the weak interaction between the two fragments, the sensor exhibited a low ECL signal in the absence of cocaine. After the target cocaine had been added to the solution, it induced association of the two fragments and stabilized the associated complexes, leading to immobilization of RuSiNPs on the electrode surface, and the ECL detected on the electrode surface was enhanced. The enhanced ECL intensity was directly proportional to the logarithm of the cocaine concentration in the range from 1.0 × 10−9 to1.0 × 10−11 mol/L, with a detection limit of 3.7 × 10−12 mol/L. The biosensor was applied to detect trace amounts of cocaine on banknotes with satisfactory results.

Scheme of the ECL aptasensor for cocaine detection in a sandwich manner. Note: each part is not according to the proportion

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Harris DS, Everhart ET, Mendelson J, Jones RT (2003) Drug Alcohol Depend 72:169–182

    Article  CAS  Google Scholar 

  2. Herman BH, Elkashef A, Vocci F (2005) Drug Discov Today Ther Strateg 2:87–92

    Article  CAS  Google Scholar 

  3. Du Y, Chen CG, Yin JY, Li BL, Zhou M, Dong SJ, Wang EK (2010) Anal Chem 82:1556–1563

    Article  CAS  Google Scholar 

  4. Ebejer KA, Brereton RG, Carter JF, Ollerton SL, Sleeman R (2005) Rapid Commun Mass Spectrom 19:2137–2143

    Article  CAS  Google Scholar 

  5. Armenta S, Guardia M (2008) Trends Anal Chem 27:344–351

    Article  CAS  Google Scholar 

  6. Sleeman R, Burton IFA, Carter JF, Roberts DJ (1999) Analyst 124:103–108

    Article  CAS  Google Scholar 

  7. Jayasena SD (1999) Clin Chem 45:1628–1650

    CAS  Google Scholar 

  8. Ellington AD, Szostak J (1990) Nature 346:818–822

    Article  CAS  Google Scholar 

  9. Hamula CLA, Guthrie JW, Zhang H, Li XF, Le XC (2006) Trends Anal Chem 25:681–691

    Article  CAS  Google Scholar 

  10. Kawde AN, Rodriguez MC, Lee TMH, Wang J (2005) Electrochem Commun 7:537–540

    Article  CAS  Google Scholar 

  11. Tombelli S, Minunni M, Mascini M (2005) Biosens Bioelectron 20:2424–2434

    Article  CAS  Google Scholar 

  12. Willner I, Zayats M (2007) Angew Chem Int Ed 46:6408–6418

    Article  CAS  Google Scholar 

  13. Zuo X, Song S, Zhang J, Pan D, Wang L, Fan C (2007) J Am Chem Soc 129:1042–1043

    Article  CAS  Google Scholar 

  14. Radi AE, OSullivan CK (2006) Chem Commun 42:3432-3434

    Google Scholar 

  15. Herr JK, Smith JE, Medley CD, Shangguan D, Tan W (2006) Anal Chem 78:2918–2924

    Article  CAS  Google Scholar 

  16. Wei H, Li B, Li J, Wang E, Dong S (2007) Chem Commun 43:3735-3737

  17. Madru BJ, Chapuis-Hugon F, Peyrin E, Pichon V (2009) Anal Chem 81:7081–7086

    Article  CAS  Google Scholar 

  18. He JL, Wu ZS, Zhou H, Wang HQ, Jiang JH, Shen GL, Yu RQ (2010) Anal Chem 82:1358–1364

    Article  CAS  Google Scholar 

  19. Hu LZ, Xu GB (2010) Chem Soc Rev 39:3275–3304

    Article  CAS  Google Scholar 

  20. Fang LY, Lu ZZ, WeI H, Wang EK (2008) Anal Chim Acta 628:80–86

    Article  CAS  Google Scholar 

  21. Zhang LH, Dong SJ (2006) Anal Chem 78:5119–5123

    Article  CAS  Google Scholar 

  22. Li Y, Qi HL, Peng Y, Yang J, Zhang CX (2007) Electrochem Commun 9:2571–2575

    Article  CAS  Google Scholar 

  23. Yao W, Wang L, Wang HY, Zhang XL, Li L (2009) Biosens Bioelectron 24:3269–3274

    Article  CAS  Google Scholar 

  24. Wang YX, Zhou MJ, Yun W, Xiao SS, Chang Z, He GP, Fang ZY (2007) Anal Chim Acta 598:242–248

    Article  CAS  Google Scholar 

  25. Sun B, Qi HL, Ma F, Gao Q, Zhang CX, Miao WJ (2010) Anal Chem 82:5046–5052

    Article  CAS  Google Scholar 

  26. Willner I, Shlyahovsky B, Zayats M, Willner B (2008) Chem Soc Rev 37:1153–1165

    Article  CAS  Google Scholar 

  27. Chen JH, Zhang J, Li J, Yang HH, Fu FF, Chen GN (2010) Biosens Bioelectron 25:996–100

    Article  CAS  Google Scholar 

  28. Golub E, Pelossof G, Freeman R, Zhang H, Willner I (2009) Anal Chem 81:9291–9298

    Article  CAS  Google Scholar 

  29. Zuo XL, Xiao Y, Plaxco KW (2009) J Am Chem Soc 131:6944–6945

    Article  CAS  Google Scholar 

  30. Santra S, Zhang P, Wang KM, Tapec R, Tan W (2001) Anal Chem 73:4988–4993

    Article  CAS  Google Scholar 

  31. Zhu X, Chen LF, Lin ZY, Qiu B, Chen GN (2010) Chem Commun 46:3149-3151

    Google Scholar 

  32. Steel AB, Herne TM, Tarlov MJ (1998) Anal Chem 70:4670–4677

    Article  CAS  Google Scholar 

  33. Xu YH, Gao Y, Wei H, Du Y, Wang EK (2006) J Chromatogr A 1115:260–266

    Article  CAS  Google Scholar 

  34. Liu XQ, Shi LH, Niu WX, Li HJ, Xu GB (2007) Angew Chem Int Ed 46:421–424

    Article  CAS  Google Scholar 

  35. Patolsky F, Lichtenstein A, Willner I (2001) J Am Chem Soc 123:5194–5205

    Article  CAS  Google Scholar 

  36. Heller A (2000) Faraday Discuss 116:1–13

    Article  CAS  Google Scholar 

  37. Bertolino C, MacSweeney M, Tobin J, O’Neill B, Sheehanb MM, Coluccia S, Berney H (2005) Biosens Bioelectron 21:565–573

    Article  CAS  Google Scholar 

  38. Li Y, Qi HL, Peng Y, Gao Q, Zhang CX (2008) Electrochem Commun 10:1322–1325

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the National Basic Research Program of China (no. 2010CB732403), National Nature Sciences Funding of China (20735002, 40940026, 20905013), and the Special Foundation for Young Scientists of Fujian Province, China (2008F3057)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Q., Chen, L., Luo, F. et al. Determination of cocaine on banknotes through an aptamer-based electrochemiluminescence biosensor. Anal Bioanal Chem 400, 289–294 (2011). https://doi.org/10.1007/s00216-011-4739-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4739-3

Keywords