Skip to main content

Advertisement

Log in

Surface-enhanced fluorescence and surface-enhanced Raman scattering of push–pull molecules: sulfur-functionalized 4-amino-7-nitrobenzofurazan adsorbed on Ag and Au nanostructured substrates

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We investigated the chemisorption of self-assembled monolayers of sulfur-functionalized 4-amino-7-nitrobenzofurazan on gold and silver nanoisland films (NIFs) by means of surface-enhanced fluorescence (SEF) and surface-enhanced Raman scattering (SERS). The ligand is a push–pull molecule, where an intramolecular charge transfer occurs between an electron-donor and an electron-acceptor group, thus exhibiting nonlinear optical properties that are related to both SERS and SEF effects. The presence of different heteroatoms in the molecule ensures the possibility of chemical interaction with both silver and gold substrates. The SERS spectra suggest that furazan is bound to silver via lone pairs of the nitrogen atoms, whereas the ligand is linked to gold via a sulfur atom. Silver NIFs provide more efficient enhancement of both fluorescence and Raman scattering in comparison with gold NIFs. The present SEF and SERS investigation could provide useful information for foreseeing changes in the nonlinear responses of this push–pull molecule.

Surface-enhanced fluorescence on Ag and Au substrates

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Le Ru EC, Etchegoin PG (2009) Principles of surface-enhanced Raman spectroscopy and related plasmonic effects. Elsevier, Amsterdam

    Google Scholar 

  2. Fort E, Grésillon S (2008) J Phys D Appl Phys 41:013001

    Article  Google Scholar 

  3. Ray K, Badugu R, Lakowicz JR (2006) Langmuir 22:8374–8378

    Article  CAS  Google Scholar 

  4. Mori J, Kaino T (1988) Phys Lett A 127:259–262

    Article  CAS  Google Scholar 

  5. Wang C-K, Wang Y-H, Su Y, Luo Y (2003) J Chem Phys 119:4409–4412

    Article  CAS  Google Scholar 

  6. Shoute LCT, Woo HY, Vak D, Bazan GC, Kelley AM (2006) J Chem Phys 125:054506-1/10

    Google Scholar 

  7. Muniz-Miranda M, Neto N (2004) Colloids Surf A 249:79–84

    CAS  Google Scholar 

  8. Morawitz H, Philpott MR (1974) Phys Rev B 10:4863–4868

    Article  Google Scholar 

  9. Becker H, Burns SE, Friend RH (1997) Phys Rev B 56:1893–1905

    Article  CAS  Google Scholar 

  10. Lakowicz JR (2005) Anal Biochem 337:171–194

    Article  CAS  Google Scholar 

  11. Heberer H, Matschiner HJ (1986) J Prakt Chem 328:261–274

    Article  CAS  Google Scholar 

  12. Szafranski CA, Tanner W, Laibinis PE, Garrell RL (1998) Langmuir 14:3570–3579

    Article  CAS  Google Scholar 

  13. Carron KT, Hurley LG (1991) J Phys Chem 95:9979–9984

    Article  CAS  Google Scholar 

  14. Murty KVGK, Venkataramanan M, Pradeep T (1998) Langmuir 14:5446–5456

    Article  CAS  Google Scholar 

  15. Fleger Y, Mastai Y, Rosenbluh M, Dressler DH (2009) Surf Sci 603:788–793

    Article  CAS  Google Scholar 

  16. Muniz-Miranda M, Innocenti M, Foresti ML (2006) Surf Sci 600:2096–2102

    Article  CAS  Google Scholar 

  17. Pignataro B, De Bonis A, Compagnini G, Sassi P, Cataliotti RS (2000) J Chem Phys 113:5947–5953

    Article  CAS  Google Scholar 

  18. Compagnini G, Pelligra B, Pignataro B (1998) Mater Res Soc Symp Proc 501:109–114

    CAS  Google Scholar 

  19. Michaels AM, Jiang J, Brus L (2000) J Phys Chem B 104:11965–11971

    Article  CAS  Google Scholar 

  20. DelRosso T, Giorgetti E, Cicchi S, Muniz-Miranda M, Margheri G, Giusti A, Rindi A, Ghini G, Sottini S, Marcelli A, Foggi P (2009) J Lumin 129:1955–1959

    Article  CAS  Google Scholar 

  21. Dick LA, McFarland AD, Haynes CL, Van Duyne RP (2002) J Phys Chem B 106:853–860

    Article  CAS  Google Scholar 

  22. Litorja M, Haynes CL, Haes AJ, Jensen TR, Van Duyne RP (2001) J Phys Chem B 105:6907–6915

    Article  CAS  Google Scholar 

  23. Hultee JC, Van Duyne RP (1995) J Vac Sci Technol A 13:1553–1558

    Article  Google Scholar 

  24. Weimer WA, Dyer MJ (2001) Appl Phys Lett 79:3164–3316

    Article  CAS  Google Scholar 

  25. Ricard D, Roussignol P, Flytzanis C (1985) Opt Lett 10:511–513

    Article  CAS  Google Scholar 

  26. Hache F, Ricard D, Flytzanis C (1986) J Opt Soc Am B 3:1647–1655

    Article  CAS  Google Scholar 

  27. Hache F, Ricard D, Flytzanis C, Kreibig U (1988) Appl Phys A 47:347–357

    Article  Google Scholar 

  28. Bloemer MJ, Haus JW, Ashley PR (1990) J Opt Soc Am B 7:790–796

    Article  CAS  Google Scholar 

  29. Sato T, Ichikawa T, Ito T, Yonezawa Y, Kadono K, Sakagishi T, Miya M (1995) Chem Phys Lett 242:310–314

    Article  CAS  Google Scholar 

  30. Shalaev VM, Sarychev AK (1998) Phys Rev B 57:13265–13288

    Article  CAS  Google Scholar 

  31. Sarychev AK, Shalaev VM (2000) Phys Rep 335:275–371

    Article  CAS  Google Scholar 

  32. Haller KL, Bumm LA, Altkorn RI, Zeman EJ, Schatz GC, Van Duyne RP (1989) J Chem Phys 90:1237–1262

    Article  CAS  Google Scholar 

  33. Lucotti A, Del Zoppo M, Zerbi G (2005) J Raman Spectrosc 36:974–977

    Article  CAS  Google Scholar 

  34. Giorgetti E, Margheri G, Sottini S, Toci G, Muniz-Miranda M, Moroni L, Dellepiane G (2002) Phys Chem Chem Phys 4:2762–2767

    Article  CAS  Google Scholar 

  35. Giorgetti E, Margheri G, Sottini S, Muniz-Miranda M (2003) Synth Met 139:929–932

    Article  CAS  Google Scholar 

  36. Margheri G, Giorgetti E, Sottini S, Toci G (2003) J Opt Soc Am B 20:751–741

    Article  Google Scholar 

Download references

Acknowledgements

Funding from the Italian FIRB 2004 "Molecular compounds and hybrid nanostructured materials with resonant and non resonant optical properties for photonic devices" (contract no. RBNE033KMA) and from PRIN 2007 “Metal-organic plasmonic nanostructures for sensors” contract no 2007LN873M_002 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Muniz-Miranda.

Additional information

Published in the special issue Analytical and Bioanalytical Luminescence with guest editor Petr Solich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muniz-Miranda, M., Del Rosso, T., Giorgetti, E. et al. Surface-enhanced fluorescence and surface-enhanced Raman scattering of push–pull molecules: sulfur-functionalized 4-amino-7-nitrobenzofurazan adsorbed on Ag and Au nanostructured substrates. Anal Bioanal Chem 400, 361–367 (2011). https://doi.org/10.1007/s00216-011-4732-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4732-x

Keywords

Profiles

  1. Tommaso Del Rosso