Skip to main content
Log in

Stand-off Raman spectroscopy: a powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A pulsed stand-off Raman system has been built and optimised for the qualitative and quantitative analysis of inorganic and organic samples including explosives. The system consists of a frequency doubled Q-switched Nd:YAG laser (532 nm, 10 Hz, 4.4 ns pulse length), aligned coaxially with a 6″ Schmidt–Cassegrain telescope for the collection of Raman scattered light. The telescope was coupled via a fibre optic bundle to an Acton standard series SP-2750 spectrograph with a PI-MAX 1024RB intensified CCD camera equipped with a 500-ps gating option for detection. Gating proved to be essential for achieving high signal-to-noise ratios in the recorded stand-off Raman spectra. In some cases, gating also allowed suppression of disturbing fluorescence signals. For the first time, quantitative analysis of stand-off Raman spectra was performed using both univariate and multivariate methods of data analysis. To correct for possible variation in instrumental parameters, the nitrogen band of ambient air was used as an internal standard. For the univariate method, stand-off Raman spectra obtained at a distance of 9 m on sodium chloride pellets containing varying amounts of ammonium nitrate (0–100%) were used. For the multivariate quantification of ternary xylene mixtures (0–100%), stand-off spectra at a distance of 5 m were used. The univariate calibration of ammonium nitrate yielded R 2 values of 0.992, and the multivariate quantitative analysis yielded root mean square errors of prediction of 2.26%, 1.97% and 1.07% for o-, m- and p-xylene, respectively. Stand-off Raman spectra obtained at a distance of 10 m yielded a detection limit of 174 μg for NaClO3. Furthermore, to assess the applicability of stand-off Raman spectroscopy for explosives detection in “real-world” scenarios, their detection on different background materials (nylon, polyethylene and part of a car body) and in the presence of interferents (motor oil, fuel oil and soap) at a distance of 20 m was also investigated.

Stand-off Raman spectroscopy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Manz A, Harrison JD, Verpoorte EMJ, Fettinger JC, Luedi H, Widmer HM (1991) Chimia 45:103

    CAS  Google Scholar 

  2. Ramsey JM (1999) Nat Biotechnol 17:1061

    Article  CAS  Google Scholar 

  3. Stöckle RM, Suh YD, Deckert V, Zenobi R (1999) Chem Phys Lett 318:131

    Article  Google Scholar 

  4. Wang L, Kowalik J, Mizaikoff B, Kranz C (2010) Anal Chem 82:3139

    Article  CAS  Google Scholar 

  5. Smith E, Dent G (2005) Modern Raman spectroscopy a practical approach. Wiley, Chichester

    Google Scholar 

  6. Lewis IR, Daniel NW Jr, Chaffin NC, Griffiths PR, Tungol MW (1995) Spectrochim Acta Part A Mol Biomol Spectrosc 51:12

    Article  Google Scholar 

  7. Sharma SK, Lucey PG, Ghosh M, Hubble HW, Horton KA (2003) Spectrochim Acta Part A Mol Biomol Spectrosc 59:2391

    Article  Google Scholar 

  8. Misra AK, Sharma SK, Chio CH, Lucey PG, Lienert B (2005) Spectrochim Acta Part A Mol Biomol Spectrosc 61:2281

    Article  Google Scholar 

  9. Cooney J (1965) Proceedings of the symposium on electromagnetic sensing of the earth from satellites. Polytechnic P, Brooklyn, New York

  10. Leonard DA (1967) Nature 216:142

    Article  CAS  Google Scholar 

  11. Angel SM, Kulp TJ, Vess TM (1992) Appl Spectrosc 46:1085

    Article  CAS  Google Scholar 

  12. Sharma SK, Misra AK, Lucey PG, Angel SM, McKay CP (2006) Appl Spectrosc 60:871

    Article  CAS  Google Scholar 

  13. Sharma SK, Misra AK, Singh UN (2008) Proc of SPIE 7153:715307-1

    Google Scholar 

  14. Sharma SK, Misra AK, Clegg SM, Barefield JE, Wiens RC, Acosta T (2010) Phil Trans R Soc A 68:3167

    Article  Google Scholar 

  15. Klein V, Popp J, Tarcea N, Schmitt M, Kiefer W, Hofer S, Stuffler T, Hilchenbach M, Doyle D, Dieckmann M (2004) J Raman Spectrosc 35:433

    Article  CAS  Google Scholar 

  16. Vandenabeele P, Castro K, Hargreaves M, Moens L, Madariaga JM, Edwards HGM (2007) Anal Chim Acta 588:108

    Article  CAS  Google Scholar 

  17. Thorley FC, Baldwin KJ, Lee DC, Batchelder DN (2006) J Raman Spectrosc 37:335

    Article  CAS  Google Scholar 

  18. Pettersson A, Johansson I, Wallin S, Nordberg M, Östmark H (2009) Propellants Explos Pyrotech 34:297

    Article  CAS  Google Scholar 

  19. Gaft M, Nagi L (2008) Opt Mater 30:1739

    Article  CAS  Google Scholar 

  20. Ramírez-Cedeño ML, Ortiz-Rivera W, Pacheco-Londoño LC, Hernández-Rivera SP (2010) IEEE Sens J 10:693

    Article  Google Scholar 

  21. Pettersson A, Wallin S, Östmark H, Ehlerding A, Johansson I, Nordberg M, Ellis H, Al-Khalili A (2010) Proc SPIE 7664:76641K-1

    Google Scholar 

  22. Hobro AJ, Lendl B (2009) Trends Anal Chem 28:1235

    Article  CAS  Google Scholar 

  23. Bauer C, Sharma AK, Willer U, Burgmeier J, Braunschweig B, Schade W, Blaser S, Hvozdara L, Müller A, Holl G (2008) Appl Phys B: Lasers Opt 92:327

    Article  CAS  Google Scholar 

  24. Mordmueller M, Bohling C, John A, Schade W (2009) Proc SPIE 7484:74840F

    Article  Google Scholar 

  25. Moros J, Lorenzo JA, Lucena P, Tobaria LM, Laserna JJ (2010) Anal Chem 82:1389

    Article  CAS  Google Scholar 

  26. Stamm RF (1945) Anal Chem 17:318

    CAS  Google Scholar 

  27. Pelletier MJ (2003) Appl Spectrosc 57:20A

    Article  CAS  Google Scholar 

  28. Aarnoutse PJ, Westerhuis JA (2005) Anal Chem 77:1228

    Article  CAS  Google Scholar 

  29. EU FP7-project OPTIX. Available at http://www.fp7-optix.eu. Accessed 9 Nov 2010

  30. Zachhuber B, Ramer G, Hobro AJ, Lendl B (2010) Proc SPIE 7838:78380F

    Article  Google Scholar 

  31. Wallin S, Pettersson A, Östmark H, Hobro A (2009) Anal Bioanal Chem 395:259

    Article  CAS  Google Scholar 

  32. Mocak J, Bond AM, Mitchell S, Scollary G (1997) Pure Appl Chern 69:297

    Article  CAS  Google Scholar 

  33. Cooper JB, Flecher PE, Vess TM, Welch WT (1995) Appl Spectrosc 49:586

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Community's Seventh Framework Program (FP7/2007-2013) under Grant Agreement No. 218037 and from the Austrian Research Promotion Agency (FFG) under the Research Studios Austria program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Lendl.

Additional information

Published in the special issue Analytical Sciences in Austria with Guest Editors G. Allmaier, W. Buchberger and K. Francesconi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zachhuber, B., Ramer, G., Hobro, A. et al. Stand-off Raman spectroscopy: a powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives. Anal Bioanal Chem 400, 2439–2447 (2011). https://doi.org/10.1007/s00216-011-4715-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4715-y

Keywords

Navigation