Analytical and Bioanalytical Chemistry

, Volume 400, Issue 1, pp 245–253 | Cite as

Culturing and investigation of stress-induced lipid accumulation in microalgae using a microfluidic device

  • Ryan E. Holcomb
  • Lucas J. Mason
  • Kenneth F. Reardon
  • Donald M. Cropek
  • Charles S. HenryEmail author
Original Paper


There is increasing interest in using microalgae as a lipid feedstock for the production of biofuels. Lipids used for these purposes are triacylglycerols that can be converted to fatty acid methyl esters (biodiesel) or decarboxylated to “green diesel.” Lipid accumulation in most microalgal species is dependent on environmental stress and culturing conditions, and these conditions are currently optimized using slow, labor-intensive screening processes. Increasing the screening throughput would help reduce the development cost and time to commercial production. Here, we demonstrated an initial step towards this goal in the development of a glass/poly(dimethylsiloxane) (PDMS) microfluidic device capable of screening microalgal culturing and stress conditions. The device contained power-free valves to isolate microalgae in a microfluidic growth chamber for culturing and stress experiments. Initial experiments involved determining the biocompatibility and culturing capability of the device using the microalga Tetraselmis chuii. With this device, T. chuii could be successfully cultured for up to 3 weeks on-chip. Following these experiments, the device was used to investigate lipid accumulation in the microalga Neochloris oleabundans. It was shown that this microalga could be stressed to accumulate cytosolic lipids in a microfluidic environment, as evidenced with fluorescence lipid staining. This work represents the first example of microalgal culturing in a microfluidic device and signifies an important expansion of microfluidics into the biofuels research arena.


Microalgae Microfluidics Valves Lipids Biofuels Cell culturing 



The authors thank Tara D. Schumacher for providing microalgae samples, culturing media, and relevant information regarding microalgal culturing. Additionally, the authors thank James T. Palmer for his rendering of Fig. 1a. Finally, the authors would like to thank Joshua M. Stillahn for his assistance in conducting profilometry measurements. This work was jointly funded by the US Army Corps of Engineers 6.2 Applied Research Program and the Sustainable Bioenergy Development Center at Colorado State University (Grant 09-01) through contract DE-FG02-08ER64622 from the Department of Energy.

Supplementary material

216_2011_4710_MOESM1_ESM.pdf (24 kb)
ESM 1 (PDF 23.6 kb)


  1. 1.
    Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639CrossRefGoogle Scholar
  2. 2.
    Greenwell HC, Laurens LM, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7(46):703–726CrossRefGoogle Scholar
  3. 3.
    Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45(2):160–186CrossRefGoogle Scholar
  4. 4.
    West J, Becker M, Tombrink S, Manz A (2008) Micro total analysis systems: latest achievements. Anal Chem 80(12):4403–4419CrossRefGoogle Scholar
  5. 5.
    Erickson D, Li DQ (2004) Integrated microfluidic devices. Anal Chim Acta 507(1):11–266CrossRefGoogle Scholar
  6. 6.
    Weibel DB, Kruithof M, Potenta S, Sia SK, Lee A, Whitesides GM (2005) Torque-actuated valves for microfluidics. Anal Chem 77(15):4726–4733CrossRefGoogle Scholar
  7. 7.
    Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24(21):3563–3576CrossRefGoogle Scholar
  8. 8.
    Khademhosseini A, Langer R, Borenstein J, Vacanti JP (2006) Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci USA 103(8):2480–2487CrossRefGoogle Scholar
  9. 9.
    Weibel DB, Whitesides GM (2006) Applications of microfluidics in chemical biology. Curr Opin Chem Biol 10(6):584–591CrossRefGoogle Scholar
  10. 10.
    Yi CQ, Li CW, Ji SL, Yang MS (2006) Microfluidics technology for manipulation and analysis of biological cells. Anal Chim Acta 560(1–2):1–23CrossRefGoogle Scholar
  11. 11.
    Tanaka Y, Sato K, Shimizu T, Yamato M, Okano T, Kitamori T (2007) Biological cells on microchips: new technologies and applications. Biosens Bioelectron 23(4):449–458CrossRefGoogle Scholar
  12. 12.
    Nagai M, Ryu S, Thorsen T, Matsudaira P, Fujita H (2010) Chemical control of Vorticella bioactuator using microfluidics. Lab Chip 10(12):1574–1578CrossRefGoogle Scholar
  13. 13.
    Gocze PM, Freeman DA (1994) Factors underlying the variability of lipid droplet fluorescence in Ma-10 Leydig tumor cells. Cytometry 17(2):151–158CrossRefGoogle Scholar
  14. 14.
    Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms. 1. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol 8(2):229–239CrossRefGoogle Scholar
  15. 15.
    Bold HC (1949) The morphology of Chlamydomonas chlamydogama sp. nov. Bull Torrey Bot Club 76(2):101–108CrossRefGoogle Scholar
  16. 16.
    Gouveia L, Marques AE, da Silva TL, Reis A (2009) Neochloris oleabundans UTEX #1185: a suitable renewable lipid source for biofuel production. J Ind Microbiol Biotechnol 36(6):821–826CrossRefGoogle Scholar
  17. 17.
    Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116CrossRefGoogle Scholar
  18. 18.
    Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298(5593):580–584CrossRefGoogle Scholar
  19. 19.
    McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu HK, Schueller OJA, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21(1):27–40CrossRefGoogle Scholar
  20. 20.
    Merkel TC, Bondar VI, Nagai K, Freeman BD, Pinnau I (2000) Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J Polym Sci Pt B Polym Phys 38(3):415–434CrossRefGoogle Scholar
  21. 21.
    Wheeler AE, Zingaro RA, Irgolic K, Bottino NR (1982) The effect of selenate, selenite, and sulfate on the growth of 6 unicellular marine-algae. J Exp Mar Biol Ecol 57(2–3):181–194CrossRefGoogle Scholar
  22. 22.
    da Costa ACA, de Franca FP (1998) The behaviour of the microalgae Tetraselmis chuii in cadmium-contaminated solutions. Aquacult Int 6(1):57–66CrossRefGoogle Scholar
  23. 23.
    da Costa R, Koening ML, de Macedo SJ (2004) Urban secondary sewage: an alternative medium for the culture of Tetraselmis chuii (Prasinophyceae) and Dunaliella viridis (Chlorophyceae). Braz Arch Biol Technol 47(3):451–459Google Scholar
  24. 24.
    Nunes B, Cardoso MF, Carvalho F, Guilhermino L (2008) The microalga Tetraselmis chuii (Chlorophyceae) in ecotoxicology: culture conditions and growth model. Fresenius Environ Bull 17(4):408–414Google Scholar
  25. 25.
    Roessler PG (1990) Environmental control of glycerolipid metabolism in microalgae: commercial implications and future-research directions. J Phycol 26(3):393–399CrossRefGoogle Scholar
  26. 26.
    Ro KW, Chan WJ, Kim H, Koo YM, Hahn JH (2003) Capillary electrochromatography and preconcentration of neutral compounds on poly(dimethylsiloxane) microchips. Electrophoresis 24(18):3253–3259CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ryan E. Holcomb
    • 1
  • Lucas J. Mason
    • 1
  • Kenneth F. Reardon
    • 2
  • Donald M. Cropek
    • 3
  • Charles S. Henry
    • 1
    • 2
    Email author
  1. 1.Department of ChemistryColorado State UniversityFort CollinsUSA
  2. 2.Department of Chemical and Biological EngineeringColorado State UniversityFort CollinsUSA
  3. 3.US Army Engineer Research and Development Center, Construction Engineering Research Laboratory (CERL)ChampaignUSA

Personalised recommendations