Skip to main content
Log in

Urinary excretion profiles of toremifene metabolites by liquid chromatography-mass spectrometry. Towards targeted analysis to relevant metabolites in doping control

Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Cite this article

Abstract

In the present study, toremifene urinary excretion studies were evaluated in order to examine main metabolic reactions and to select target metabolites in doping control analysis. Urine samples from three female subjects were collected every 3 h for at least 15 days after the oral administration of a single dose of Fareston® (60 mg). The elemental compositions of the compounds detected were determined by liquid chromatography-mass spectrometry using a time-of-flight system with accurate mass measurement. More detailed structure elucidation was obtained by monitoring the presence or absence of structure-specific ions, using product ion scan and neutral loss acquisition modes, whereas the metabolites urinary profiles were evaluated in selected reaction monitoring acquisition mode. The results showed that the main routes of phase-I modifications involved carboxylation of the chlorinated side chain, N-demethylation and hydroxylation in different positions. Fifteen metabolites were found in all subjects studied, most of them were detected for more than 10 days in the free, glucuronide and sulphate fractions, with a maximum of excretion generally after 9–22 and 34–47 h from drug administration. These metabolites can be divided in two groups: metabolites with the characteristic chlorine isotope pattern and metabolites without the characteristic chlorine isotope pattern. The most abundant and long-term compounds were the carboxylated metabolites followed by the hydroxylated metabolites. Their product ions originating after collision-induced dissociation were observed to occur prevalently in the dimethylaminoethoxy and in the chlorinated side chains. These structure-specific ions were used to design screening and confirmation procedures to positively identify toremifene administration in doping control analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Dombernowsky P (1993) Breast Cancer Res Treat 25:57–63

    Article  Google Scholar 

  2. Goldstein SR, Siddhanti S, Ciaccia AV, Plouffe L (2000) Hum Reprod Update 6(3):212–224

    Article  CAS  Google Scholar 

  3. Kangas L (1990) J Steroid Biochem 36:191–195

    Article  CAS  Google Scholar 

  4. Lien EA, Lønning PE (2000) Cancer Treat Rev 26:205–227

    Article  CAS  Google Scholar 

  5. Morello KC, Wurz GT, DeGregorio MW (2002) Crit Rev Oncol Hematol 43:63–76

    Article  Google Scholar 

  6. Sotaniemi EA, Anttila MI (1997) Cancer Chemother Pharmacol 40:185–188

    Article  CAS  Google Scholar 

  7. Tomas E, Kauppila A, Blanco G, Apaja-Sarkkinen M, Laatikainen T (1995) Gynecol Oncol 59:261–266

    Article  CAS  Google Scholar 

  8. Valavaara R, Pyrhonen S, Heikkinen M, Rissanen P, Blanco G, Tholix E, Nordman E, Taskinen D, Holsti L, Hajba A (1988) Eur J Cancer 24:785–790

    Article  CAS  Google Scholar 

  9. Weibe VJ, Benz C, Shemano I, Cadman TB, DeGregorio MW (1990) Cancer Chemother Pharmacol 25:247–251

    Article  Google Scholar 

  10. Johnson MD, Zuo H, Lee K-H, Trebley JP, Rae JM, Weatherman RV, Desta Z, Flockhart DA, Skaar TC (2004) Breast Cancer Res Treat 85(2):151–159

    Article  CAS  Google Scholar 

  11. Jordan VG (2007) Steroids 72:829–842

    Article  CAS  Google Scholar 

  12. Handelsman DJ (2006) J Clin Endocrinol Metab 91(5):1646–1653, Clinical review

    Article  CAS  Google Scholar 

  13. Handelsman DJ (2008) Br J Pharmacol 154:598–605

    Article  CAS  Google Scholar 

  14. The World Anti-Doping Code. The 2011 Prohibited List International Standard. World Anti-Doping Agency, Montreal, Canada. Available at: www.wada-ama.org

  15. Russell M, Lim CK (2002) Biomed Chromatogr 16:361–363

    Article  Google Scholar 

  16. Lim EK, Yuan Z-X, Ying K-E, Smith LL (1994) Liq Chromatogr 17:1773–1783

    Article  CAS  Google Scholar 

  17. Webster LK, Crinis NA, Stokes KH, Bishop JF (1991) Chromatogr 565:482–487

    Article  CAS  Google Scholar 

  18. Watanabe N, Irie T, Koyama M (1989) J Chromatogr 497:169–180

    Article  CAS  Google Scholar 

  19. Taras TL, Wurz GT, Linares GR, DeGregorio MW (2000) Clin Pharmacokinet 5:327–334

    Article  Google Scholar 

  20. Sipilä H, Kangas L, Vuorilehto L, Kalapudas A, Eloranta M, Sördevall M, Toivola R, Anttila M (1990) J Steroid Biochem 36:211–215

    Article  Google Scholar 

  21. Jones RM, Lim CK (2002) Biomed Chomatogr 16:361–363

    Article  CAS  Google Scholar 

  22. Berthou F, Dréano Y (1993) Chromatogr 616:117–127

    Article  CAS  Google Scholar 

  23. Martinsen A, Gynther J (1996) J Chromatogr A 724:358–363

    Article  CAS  Google Scholar 

  24. Fan PW, Zhang F, Bolton JL (2000) Chem Res Toxicol 13:45–52

    Article  CAS  Google Scholar 

  25. Lohmann W, Karst U (2009) Anal Bioanal Chem 394:1341–1348

    Article  CAS  Google Scholar 

  26. Mazzarino M, Fiacco I, de la Torre X, Botrè F (2008) Eur J Mass Spectrom 43:903–907

    Article  Google Scholar 

  27. Mazzarino M, de la Torre X, Di Santo R, Fiacco I, Rosi F, Botrè F (2010) Rapid Commun Mass Spectrom 24:749–760

    Article  CAS  Google Scholar 

  28. Mazzarino M, de la Torre X, Botrè F (2008) Anal Bioanal Chem 392:681–698

    Article  CAS  Google Scholar 

  29. The WADA Technical Document TD2009MRPL (2009) Minimum required performance level for detection of prohibited substances. World Anti-Doping Agency, Montreal, Canada. Available at: www.wada-ama.org

Download references

Acknowledgement

This work has been supported in part by a Research Grant of the Italian Department of Health (“Ministero della Salute, Commissione per la vigilanza sul doping e sulla tutela sanitaria delle attività sportive”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Botrè.

Additional information

Published in the special issue Anti-Doping Analysis with Guest Editor Mario Thevis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mazzarino, M., de la Torre, X. & Botrè, F. Urinary excretion profiles of toremifene metabolites by liquid chromatography-mass spectrometry. Towards targeted analysis to relevant metabolites in doping control. Anal Bioanal Chem 401, 529–541 (2011). https://doi.org/10.1007/s00216-011-4695-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4695-y

Keywords

Navigation