Skip to main content
Log in

Reversed-phase depletion coupled with hydrophilic affinity enrichment for the selective isolation of N-linked glycopeptides by using Click OEG-CD matrix

  • Short Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Selective enrichment of glycopeptides is of great importance for protein glycosylation analysis using mass spectrometry since the signals of glycopeptides could be severely suppressed by the coexisting non-glycosylated peptides in the protein digest. In the present work, a strategy for N-linked glycopeptide enrichment through reversed-phase depletion coupled with hydrophilic affinity enrichment by applying the customized matrix named Click OEG-CD is developed. Compared with single hydrophilic interaction liquid chromatography (HILIC) mode, the strategy exhibited remarkably higher selectivity for N-linked glycopeptides. As many as 22, 18, and eight glycopeptides were detected in the glycopeptide fraction enriched with the strategy from the digests of human immunoglobulin G, horseradish peroxidase and bovine ribonuclease B, respectively. In addition, the strategy also showed high glycosylation microheterogeneity coverage for the enrichment of human α1-acid glycoprotein glycopeptides. More than 170 glycopeptides covering all the glycosylation sites were detected in the enriched fraction. The revered-phase liquid chromatography depletion coupled with HILIC enrichment strategy by using Click OEG-CD matrix is expected to show more potential in further applications in glycosylation analysis.

A reversed-phase depletion coupled with HILIC glycopeptide enrichment strategy by using Click OEG-CD matrix was developed in the work

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Daniels MA, Hogquist KA, Jameson SC (2002) Nat Immunol 3:903–910

    Article  CAS  Google Scholar 

  2. Dwek MV, Ross HA, Leathem AJC (2001) Proteomics 1:756–762

    Article  CAS  Google Scholar 

  3. Cao J, Shen CP, Wang H, Shen HL, Chen YC, Nie AY, Yan GQ, Lu HJ, Liu YK, Yang PY (2009) J Proteome Res 8:662–672

    Article  CAS  Google Scholar 

  4. Sparbier K, Wenzel T, Kostrzewa M (2006) J Chromatogr B 840:29–36

    Article  CAS  Google Scholar 

  5. Qian K, Wan JJ, Huang XD, Yang PY, Liu BH, Yu CZ (2010) Chem Eur J 16:822–828

    CAS  Google Scholar 

  6. Zhang H, Yi EC, Li X-j, Mallick P, Kelly-Spratt KS, Masselon CD, Camp DGII, Smith RD, Kemp CJ, Aebersold R (2005) Mol Cell Proteomics 4:144–155

    CAS  Google Scholar 

  7. Zhang Y, Go EP, Desaire H (2008) Anal Chem 80:3144–3158

    Article  CAS  Google Scholar 

  8. Ding W, Hill JJ, Kelly J (2007) Anal Chem 79:8891–8899

    Article  CAS  Google Scholar 

  9. Wada Y, Tajiri M, Yoshida S (2004) Anal Chem 76:6560–6565

    Article  CAS  Google Scholar 

  10. Tajiri M, Yoshida S, Wada Y (2005) Glycobiology 15:1332–1340

    Article  CAS  Google Scholar 

  11. Liu X, McNally DJ, Nothaft H, Szymanski CM, Brisson J-R, Li J (2006) Anal Chem 78:6081–6087

    Article  CAS  Google Scholar 

  12. Yu YQ, Gilar M, Kaska J, Gebler JC (2005) Rapid Commun Mass Spectrom 19:2331–2336

    Article  CAS  Google Scholar 

  13. Wohlgemuth J, Karas M, Eichhorn T, Hendriks R, Andrecht S (2009) Anal Biochem 395:178–188

    Article  CAS  Google Scholar 

  14. Yu L, Li XL, Guo ZM, Zhang XL, Liang XM (2009) Chem Eur J 15:12618–12626

    Article  CAS  Google Scholar 

  15. Zhao YY, Guo ZM, Zhang YP, Xue XY, Xu Q, Li XL, Liang XM, Zhang YK (2009) Talanta 78:916–921

    Article  CAS  Google Scholar 

  16. Larsen MR, Hojrup P, Roepstorff P (2005) Mol Cell Proteomics 4:107–119

    CAS  Google Scholar 

  17. Monzo A, Bonn G, Gultman A (2007) Anal Bioanal Chem 389:2097–2102

    Article  CAS  Google Scholar 

  18. Imre T, Schlosser G, Pocsfalvi G, Siciliano R, Molnar-Szollosi E, Kremmer T, Malorni A, Vekey K (2005) J Mass Spectrom 40:1472–1483

    Article  CAS  Google Scholar 

  19. Hagglund P, Bunkenborg J, Elortza F, Jensen ON, Roepstorff P (2004) J Proteome Res 3:556–566

    Article  Google Scholar 

  20. Kondo A, Thaysen-Andersen M, Hjerno K, Jensen ON (2010) J Sep Sci 33:891–902

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Funds for Distinguished Young Scholar (20825518), the National Science Foundation of China (20805046), and the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-YW-R-170).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuling Li or Xinmiao Liang.

Additional information

Yanyan Zhao and Long Yu have contributed equally to this work.

Published in the special issue Analytical and Bioanalytical Science in China with Guest Editors Lihua Zhang, Qiankun Zhuang and Yukui Zhang.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM1

(PDF 332 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Yu, L., Guo, Z. et al. Reversed-phase depletion coupled with hydrophilic affinity enrichment for the selective isolation of N-linked glycopeptides by using Click OEG-CD matrix. Anal Bioanal Chem 399, 3359–3365 (2011). https://doi.org/10.1007/s00216-011-4652-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4652-9

Keywords

Navigation