Skip to main content
Log in

Quantum dot-based array for sensitive detection of Escherichia coli

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A fluorescent quantum dot-based antibody array, used in sandwich format, has been developed to detect Escherichia coli O157:H7. Numerous parameters such as solid support, optimal concentration of immunoreagents, blocking reagents, and assay time were optimized for array construction. Quantum dot-conjugated anti-IgG was used as the detecting system. The array allows the detection of E. coli O157:H7 at concentrations below 10 CFU mL−1 without sample enrichment, exhibiting an increase of three orders of magnitude in the limit of detection compared to ELISA. The interference caused by Gram (+) and Gram (−) bacteria was negligible at low concentrations of bacteria.

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bell C (2002) Approach to the control of entero-haemorrhagic Escherichia coli (EHEC). Int J Food Microbiol 78:197–216

    Article  CAS  Google Scholar 

  2. Griffin PM, Tauxe RV (1991) The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol Rev 13:60–98

    CAS  Google Scholar 

  3. Dorn CR, Angrick EJ (1991) Serotype O157:H7 Escherichia coli from bovine and meat sources. J Clin Microbiol 29:1225–1231

    CAS  Google Scholar 

  4. Hrudey SE, Payment P, Huck PM, Gillham RW, Hrudey EJ (2003) A fatal waterborne disease epidemic in Walkerton, Ontario: comparison with other waterborne outbreaks in the developed world. Water Sci Technol 47:7–14

    CAS  Google Scholar 

  5. Mead PS, Griffin PM (1998) Escherichia coli O157:H7. Lancet 352:1207–1212

    Article  CAS  Google Scholar 

  6. Allen MJ, Edberg SC, Reasoner DJ (2004) Heterotrophic plate count bacteria—what is their significance in drinking water? Int J Food Microbiol 92:265–274

    Article  Google Scholar 

  7. Van Dyck E, Ieven M, Pattyn S, Van Damme L, Laga M (2001) Detection of Chlamydia trachomatis and Neisseria gonorrhoeae by enzyme immunoassay, culture, and three nucleic acid amplification tests. J Clin Microbiol 39:1751–1756

    Article  Google Scholar 

  8. Manafi M, Kremsmaier B (2001) Comparative evaluation of different chromogenic/fluorogenic media for detecting Escherichia coli O157:H7 in food. Int J Food Microbiol 71:257–262

    Article  CAS  Google Scholar 

  9. Hansen WL, Beuving J, Bruggeman CA, Wolffs PF (2010) Molecular probes for the diagnosis of clinically relevant bacterial infections in blood cultures. J Clin Microbiol 48(12):4432–4438

    Article  Google Scholar 

  10. Dharmasiri U, Witek MA, Adams AA, Osiri JK, Hupert L, Bianchi S, Roelke DL, Soper SA (2010) Enrichment and detection of Escherichia coli O157:H7 from water samples using an antibody modified microfluidic chip. Anal Chem 82:2844–2849

    Article  CAS  Google Scholar 

  11. Ligler FS, Sapsford KE, Golden JP, Shriver-Lake LC, Taitt CR, Dyer MA, Barone S, Myatt C (2007) The array biosensor: portable, automated systems. Anal Sci 23:5–10

    Article  Google Scholar 

  12. Angenendt P (2005) Progress in protein and antibody microarray technology. Drug Discov Today 10:503–511

    Article  CAS  Google Scholar 

  13. Wingren C, Borrebaeck CA (2009) Antibody-based microarrays. Meth Mol Biol 509:57–84

    Article  CAS  Google Scholar 

  14. Gehring AG, Albin DM, Bhunia AK, Reed SA, Tu SI, Uknalis J (2006) Antibody microarray detection of Escherichia coli O157:H7: quantification, assay limitations, and capture efficiency. Anal Chem 78:6601–6607

    Article  CAS  Google Scholar 

  15. Kim JS, Anderson GP, Erickson JS, Golden JP, Nasir M, Ligler FS (2009) Multiplexed detection of bacteria and toxins using a microflow cytometer. Anal Chem 81:5426–5432

    Article  CAS  Google Scholar 

  16. Karoonuthaisiri N, Charlermroj R, Uawisetwathana U, Luxananil P, Kirtikara K, Gajanandana O (2009) Development of antibody array for simultaneous detection of foodborne pathogens. Biosens Bioelectron 24:1641–1648

    Article  CAS  Google Scholar 

  17. Wolter A, Niessner R, Seidel M (2008) Detection of Escherichia coli O157:H7, Salmonella typhimurium, and Legionella pneumophila in water using a flow-through chemiluminescence microarray readout system. Anal Chem 80:5854–5863

    Article  CAS  Google Scholar 

  18. Karsunke XY, Niessner R, Seidel M (2009) Development of a multichannel flow-through chemiluminescence microarray chip for parallel calibration and detection of pathogenic bacteria. Anal Bioanal Chem 395:1623–1630

    Article  CAS  Google Scholar 

  19. Mukundan H, Xie H, Anderson AS, Grace WK, Shively JE, Swanson BI (2009) Optimizing a waveguide-based sandwich immunoassay for tumor biomarkers: evaluating fluorescent labels and functional surfaces. Bioconjug Chem 20:222–230

    Article  CAS  Google Scholar 

  20. Herman RA, Scherer PN, Shan G (2008) Evaluation of logistic and polynomial models for fitting sandwich-ELISA calibration curves. J Immunol Meth 339:245–258

    Article  CAS  Google Scholar 

  21. Long GL, Winefordner JD (1983) Limit of detection: a closer look at the IUPAC definition. Anal Chem 55:712–724

    Article  Google Scholar 

  22. Olle EW, Messamore J, Deogracias MP, Mcclintock SD, Anderson TD, Johnson KJ (2005) Comparison of antibody array substrates and the use of glycerol to normalize spot morphology. Exp Mol Pathol 79:206–209

    Article  CAS  Google Scholar 

  23. Gokarna A, Jin LH, Hwang JS, Cho YH, Lim YT, Chung BH, Youn SH, Choi DS, Lim JH (2008) Quantum dot-based protein micro- and nanoarrays for detection of prostate cancer biomarkers. Proteomics 8:1809–1818

    Article  CAS  Google Scholar 

  24. Macbeath GS, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289:1760–1763

    CAS  Google Scholar 

  25. Hanaki K, Momo A, Oku T, Komoto A, Maenosono S, Yamaguchi Y, Yamamoto K (2003) Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem Biophys Res Commun 302:496–501

    Article  CAS  Google Scholar 

  26. Geho D, Lahar N, Gurnan IP, Huebschman M, Herrmann P, Espina V, Shi A, Wulfkuhle J, Garner H, Petricoin ER, Liotta LA, Rosenblatt KP (2005) Pegylated, steptavidin-conjugated quantum dots are effective detection elements for reverse-phase protein microarrays. Bioconjug Chem 16:559–568

    Article  CAS  Google Scholar 

  27. Rousserie G, Sukhanova A, Even-Desrumeaux K, Fleury F, Chames P, Baty D, Oleinikov V, Pluot M, Cohen JH, Nabiev I (2010) Semiconductor quantum dots for multiplexed bio-detection on solid-state microarrays. Crit Rev Oncol Hematol 74:1–15

    Article  Google Scholar 

  28. Park TJ, Yoo SM, Keum KC, Lee S (2009) Microarray of DNA-protein complexes on poly-3-hydroxybutyrate surface for pathogen detection. Anal Bioanal Chem 393:1639–1647

    Article  CAS  Google Scholar 

  29. Jaing C, Gardner S, Mcloughlin K, Mulakken N, Alegria-Hartman M, Banda P, Williams P, Gu P, Wagner M, Manohar C, Slezak T (2008) A functional gene array for detection of bacterial virulence elements. PLoS ONE 3:e2163

    Article  Google Scholar 

  30. Miller MB, Tang YW (2009) Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 22:611–633

    Article  CAS  Google Scholar 

  31. Uttamchandani M, Neo JL, Ong BN, Moochhala S (2009) Applications of microarrays in pathogen detection and biodefence. Trends Biotechnol 27:53–61

    Article  CAS  Google Scholar 

  32. Seurynck-Servoss SL, White AM, Baird CL, Rodland KD, Zangar RC (2007) Evaluation of surface chemistries for antibody microarrays. Anal Biochem 371:105–115

    Article  CAS  Google Scholar 

  33. Gonzalez RM, Seurynck-Servoss SL, Crowley SA, Brown M, Omenn GS, Hayes DF, Zangar RC (2008) Development and validation of sandwich ELISA microarrays with minimal assay interference. J Proteome Res 7:2406–2414

    Article  CAS  Google Scholar 

  34. Hahn MA, Tabb JS, Krauss TD (2005) Detection of single bacterial pathogens with semiconductor quantum dots. Anal Chem 77:4861–4869

    Article  CAS  Google Scholar 

  35. Liu Y, Brandon R, Cate M, Peng X, Stony R, Johnson M (2007) Detection of pathogens using luminescent CdSe/ZnS dendron nanocrystals and a porous membrane immunofilter. Anal Chem 79:8796–8802

    Article  CAS  Google Scholar 

  36. Yang L, Li Y (2006) Simultaneous detection of Escherichia coli O157:H7 and Salmonella typhimurium using quantum dots as fluorescence labels. Analyst 131:394–401

    Article  CAS  Google Scholar 

  37. Zhao Y, Ye M, Chao Q, Jia N, Ge Y, Shen H (2009) Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagnetic separation in food samples. J Agric Food Chem 57:517–524

    Article  CAS  Google Scholar 

  38. Su XL, Li Y (2004) Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Anal Chem 76:4806–4810

    Article  CAS  Google Scholar 

  39. Magliulo M, Simoni P, Guardigli M, Michelini E, Luciani M, Lelli R, Roda A (2007) A rapid multiplexed chemiluminescent immunoassay for the detection of Escherichia coli O157:H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes pathogen bacteria. J Agric Food Chem 55:4933–4939

    Article  CAS  Google Scholar 

Download references

Acknowledgments

CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Núria Pascual.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanvicens, N., Pascual, N., Fernández-Argüelles, M.T. et al. Quantum dot-based array for sensitive detection of Escherichia coli . Anal Bioanal Chem 399, 2755–2762 (2011). https://doi.org/10.1007/s00216-010-4624-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4624-5

Keywords

Navigation