Skip to main content
Log in

Synthesis and chromatographic evaluation of new polymeric chiral stationary phases based on three (1S,2S)-(−)-1,2-diphenylethylenediamine derivatives in HPLC and SFC

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Three new polymeric chiral stationary phases were synthesized based on (1S,2S)-1,2-bis(2,4,6-trimethylphenyl)ethylenediamine, (1S,2S)-1,2-bis(2-chlorophenyl)ethylenediamine, and (1S,2S)-1,2-di-1-naphthylethylenediamine via a simple free-radical-initiated polymerization in solution. These monomers are structurally related to (1S,2S)-1,2-diphenylethylenediamine which is the chiral monomer used for the commercial P-CAP-DP polymeric chiral stationary phase (CSP). The performance of these three new chiral stationary phases were evaluated in normal phase high-performance liquid chromatography (HPLC) and supercritical fluid chromatography and the results were compared with those of the P-CAP-DP column. All three new phases showed enantioselectivity for a large number of racemates with a variety of functional groups, including amines, amides, alcohols, amino acids, esters, imines, thiols, and sulfoxides. In normal phase, 68 compounds were separated with 28 baseline separations (Rs ≥ 1.5) and in SFC, 65 compounds were separated with 24 baseline separations. In total 72 out of 100 racemates were separated by these CSPs with 37 baseline separations. Complimentary separation capabilities were observed for many analytes. The new polymeric CSPs showed similar or better enantioselectivities compared with the commercial column in both HPLC and SFC. However, faster separations were achieved on the new stationary phases. Also, it was shown that these polymeric stationary phases have good sample loading capacities while maintaining enantioselectivity.

Faster separations on new polymeric chiral stationary phases in HPLC

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mellin GW, Katzenstein M (1962) N Engl J Med 267:1184–1193, 1238–1244

    Article  CAS  Google Scholar 

  2. Blaschke G, Kraft HP, Fickentscher K, Kohler F (1979) Arzneimittelforschung 29:1640–1642

    CAS  Google Scholar 

  3. Flockhart DA, Nelson HS (2002) CNS Spectr 7:23–27

    Google Scholar 

  4. US Food and Drug Administration (1992) Food and drug administration policy statement for the development of new stereoisomeric drugs. 57 Fed Reg 22: 249

    Google Scholar 

  5. Armstrong DW, Zhang B (2001) Anal Chem 73:557A–561A

    CAS  Google Scholar 

  6. Subramanian G (ed) (2007) Chiral separation techniques: a practical approach. Wiley, Weinheim

    Google Scholar 

  7. Davankov VA, Rogozhin SV (1971) J Chromatogr 60:280–283

    Article  CAS  Google Scholar 

  8. Dotsevi G, Sogah Y, Cram DJ (1975) J Am Chem Soc 97:1259–1261

    Article  CAS  Google Scholar 

  9. Mikes F, Boshart G, Gil-Av E (1976) J Chromatogr 122:205–221

    Article  CAS  Google Scholar 

  10. Mikes F, Boshart G, Gil-Av E (1976) J Chem Soc, Chem Commun 99–100

  11. Mikes F, Boshart G (1978) J Chem Soc, Chem Commun 173–175

  12. Armstrong DW, DeMond W (1984) J Chromatogr Sci 22:411–415

    CAS  Google Scholar 

  13. Armstrong DW, Stalcup AM, Hilton ML, Duncan JD, Faulkner JR Jr, Chang SC (1990) Anal Chem 62:1610–1615

    Article  CAS  Google Scholar 

  14. Stalcup AM, Chang SC, Armstrong DW (1991) J Chromatogr 540:113–128

    Article  CAS  Google Scholar 

  15. Pirkle WH, House DW (1979) J Org Chem 44:1957–1960

    Article  CAS  Google Scholar 

  16. Uray G, Lindner W (1990) Chromatographia 30:323–327

    Article  CAS  Google Scholar 

  17. Hoffmann CV, Pell R, Laemmerhofer M, Lindner W (2008) Anal Chem (Washington, DC, U S) 80:8780–8789

    CAS  Google Scholar 

  18. Armstrong DW, Tang Y, Chen S, Zhou Y, Bagwill C, Chen J (1994) Anal Chem 66:1473–1484

    Article  CAS  Google Scholar 

  19. Armstrong DW, Liu Y, Ekborgott KH (1995) Chirality 7:474–497

    Article  CAS  Google Scholar 

  20. Sun P, Wang C, Breitbach ZS, Zhang Y, Armstrong DW (2009) Anal Chem (Washington, DC, U S) 81:10215–10226

    CAS  Google Scholar 

  21. Okamoto Y, Kawashima M, Hatada K (1984) J Am Chem Soc 106:5357–5359

    Article  CAS  Google Scholar 

  22. Hesse G, Hagel R (1973) Chromatographia 6:277–280

    Article  CAS  Google Scholar 

  23. Ikai T, Yamamoto C, Kamigaito M, Okamoto Y (2006) Polym J (Tokyo, Jpn) 38:91–108

    CAS  Google Scholar 

  24. Wulff G, Sarhan A (1972) Angew Chem Int Ed Engl 11:341

    CAS  Google Scholar 

  25. Blaschke G (1974) Chem Ber 107:237–252

    Article  CAS  Google Scholar 

  26. Blaschke G (1980) Angew Chem 92:14–25

    Article  CAS  Google Scholar 

  27. Okamoto Y, Suzuki K, Ohta K, Hatada K, Yuki H (1979) J Am Chem Soc 101:4763–4765

    Article  CAS  Google Scholar 

  28. Yuki H, Okamoto Y, Okamoto I (1980) J Am Chem Soc 102:6356–6358

    Article  CAS  Google Scholar 

  29. Saigo K, Chen Y, Yonezawa N et al (1985) Chem Lett 1891–1894

  30. Gasparrini F, Misiti D, Rompietti R, Villani C (2005) J Chromatogr A 1064:25–38

    Article  CAS  Google Scholar 

  31. Zhong Q, Han X, He L, Beesley TE, Trahanovsky WS, Armstrong DW (2005) J Chromatogr A 1066:55–70

    Article  CAS  Google Scholar 

  32. Han X, He L, Zhong Q, Beesley TE, Armstrong DW (2006) Chromatographia 63:13–23

    Article  CAS  Google Scholar 

  33. Okamoto Y, Kawashima M, Hatada K (1986) J Chromatogr 363:173–186

    Article  CAS  Google Scholar 

  34. Han X, Wang C, He L, Beesley TE, Armstrong DW (2007) Anal Bioanal Chem 387:2681–2697

    Article  CAS  Google Scholar 

  35. Han X, Berthod A, Wang C, Huang K, Armstrong DW (2007) Chromatographia 65:381–400

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of this work by the Robert A. Welch foundation (Y-0026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Armstrong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Payagala, T., Wanigasekara, E. & Armstrong, D.W. Synthesis and chromatographic evaluation of new polymeric chiral stationary phases based on three (1S,2S)-(−)-1,2-diphenylethylenediamine derivatives in HPLC and SFC. Anal Bioanal Chem 399, 2445–2461 (2011). https://doi.org/10.1007/s00216-010-4615-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4615-6

Keywords

Navigation