Skip to main content

Advertisement

Log in

Rapid residue analysis of four triazolopyrimidine herbicides in soil, water, and wheat by ultra-performance liquid chromatography coupled to tandem mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A sensitive and effective method for simultaneous determination of triazolopyrimidine sulfonamide herbicide residues in soil, water, and wheat was developed using ultra-performance liquid chromatography coupled with tandem mass spectrometry. The four herbicides (pyroxsulam, flumetsulam, metosulam, and diclosulam) were cleaned up with an off-line C18 SPE cartridge and detected by tandem mass spectrometry using an electrospray ionization source in positive mode (ESI+). The determination of the target compounds was achieved in <2.0 min. The limits of detection were below 1 μg kg−1, while the limits of quantification did not exceed 3 μg kg−1 in different matrices. Quantitation was determined from calibration curves of standards containing 0.05–100 μg L−1 with r 2 > 0.997. Recovery studies were conducted at three spiked levels (0.2, 1, and 5 μg kg−1 for water; 5, 10, and 100 μg kg−1 for soil and wheat). The overall average recoveries for this method in water, soil, wheat plants, and seeds at three levels ranged from 75.4% to 106.0%, with relative standard deviations in the range of 2.1–12.5% (n = 5) for all analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Baumgartner JR, Al-Khatib K, Currie RS (1999) Weed Technol 13:489–493

    CAS  Google Scholar 

  2. Namgoong SK, Lee HJ, Kim YS, Shin JH, Che JK, Jang DY, Kim GS, Yoo JW, Kang MK, Kil MW, Choi JD, Chang SI (1999) Biochem Biophys Res Commun 258:797–801

    Article  CAS  Google Scholar 

  3. Gonzalez MA, Gorman DB, Hamilton CT, Roth GA (2008) Org Process Res Dev 12:301–303

    Article  CAS  Google Scholar 

  4. Felix J, Doohan DJ, Ditmarsen SC, Schultz ME, Wright TR, Flood BR, Rabaey TL (2002) Crop Prot 21:763–772

    Article  CAS  Google Scholar 

  5. Su S (2008) Modern Agrochemicals 7:12–12

    CAS  Google Scholar 

  6. Hernandez-Borges J, Garcia-Montelongo FJ, Cifuentes A, Rodriguez-Delgado MA (2005) J Chromatogr A 1070:171–177

    Article  CAS  Google Scholar 

  7. Rodriguez-Delgado MA, Hernandez-Borges J (2007) J Sep Sci 30:8–14

    Article  CAS  Google Scholar 

  8. Hernandez-Borges J, Garcia-Montelongo FJ, Cifuentes A, Rodriguez-Delgado MA (2005) J Chromatogr A 1100:236–242

    Article  CAS  Google Scholar 

  9. Hernandez-Borges J, Rodriguez-Delgado MA, Garcia-Montelongo FJ, Cifuentes A (2005) J Sep Sci 28:948–956

    Article  CAS  Google Scholar 

  10. Lagana A, Fago G, Marino A, Penazzi VM (2000) Anal Chim Acta 415:41–56

    Article  CAS  Google Scholar 

  11. Lagana A, Bacaloni A, De Leva I, Faberi A, Fago G, Marino A (2002) Anal Chim Acta 462:187–198

    Article  CAS  Google Scholar 

  12. Parnell JS, Hall JC (1998) J Agric Food Chem 46:152–156

    Article  CAS  Google Scholar 

  13. Rouchaud J, Neus O, Eelen H, Bulcke R (2002) Bull Environ Contam Toxicol 69:785–792

    Article  CAS  Google Scholar 

  14. Zabik JM, van Wesenbeeck IJ, Peacock AL, Kennard LM, Roberts DW (2001) J Agric Food Chem 49:3284–3290

    Article  CAS  Google Scholar 

  15. Giordano A, Fernandez-Franzon M, Ruiz MJ, Font G, Pico Y (2009) Anal Bioanal Chem 393:1733–1743

    Article  CAS  Google Scholar 

  16. Hayama T, Takada M (2008) Anal Bioanal Chem 392:969–976

    Article  CAS  Google Scholar 

  17. Liu XG, Dong FS, Li S, Zheng YQ (2008) J AOAC Int 91:1110–1115

    CAS  Google Scholar 

  18. Pirard C, Widart J, Nguyen BK, Deleuze C, Heudt L, Haubruge E, De Pauw E, Focant JF (2007) J Chromatogr A 1152:116–123

    Article  CAS  Google Scholar 

  19. Radisic M, Grujic S, Vasiljevic T, Lausevic M (2009) Food Chem 113:712–719

    Article  CAS  Google Scholar 

  20. Tokman N, Soler C, la Farre M, Pico Y, Barcelo D (2009) J Chromatogr A 1216:3138–3146

    Article  CAS  Google Scholar 

  21. Mellors JS, Jorgenson JW (2004) Anal Chem 76:5441–5450

    Article  CAS  Google Scholar 

  22. Wang J, Pang XL, Ge F, Ma ZY (2007) Toxicon 49:1120–1128

    Article  CAS  Google Scholar 

  23. Gervais G, Brosillon S, Laplanche A, Helen C (2008) J Chromatogr A 1202:163–172

    Article  CAS  Google Scholar 

  24. Leandro CC, Hancock P, Fussell RJ, Keely BJ (2007) J Chromatogr A 1144:161–169

    Article  CAS  Google Scholar 

  25. Mezcua M, Aguera A, Lliberia JL, Cortes MA, Bago B, Fernandez-Alba AR (2006) J Chromatogr A 1109:222–227

    Article  CAS  Google Scholar 

  26. Montoro EP, Gonzalez RR, Frenich AG, Torres MEH, Vidal JLM (2007) Rapid Commun Mass Spectrom 21:3585–3592

    Article  CAS  Google Scholar 

  27. European U, Decision 2002/657/EC (14 August 2002) Off J Eur Commun: 8

  28. Wang S, Zhao P, Min G, Fang GZ (2007) J Chromatogr A 1165:166–171

    Article  CAS  Google Scholar 

  29. Rodil R, Quintana JB, Lopez-Mahia P, Muniategui-Lorenzo S, Prada-Rodriguez D (2009) J Chromatogr A 1216:2958–2969

    Article  CAS  Google Scholar 

  30. Togola A, Budzinski H (2008) J Chromatogr A 1177:150–158

    Article  CAS  Google Scholar 

  31. Poole CF (2007) J Chromatogr A 1158:241–250

    Article  CAS  Google Scholar 

  32. Di Muccio A, Fidente P, Barbini DA, Dommarco R, Seccia S, Morrica P (2006) J Chromatogr A 1108:1–6

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Key Technology R&D Program (2009BADB7B03), Public service sector R & D Project (00903033), National Key Project of Fundamental Research (the 973 Program, grant no. 2009CB119000), and National Natural Science Foundation of China (30900951).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongquan Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Xu, J., Li, Y. et al. Rapid residue analysis of four triazolopyrimidine herbicides in soil, water, and wheat by ultra-performance liquid chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem 399, 2539–2547 (2011). https://doi.org/10.1007/s00216-010-4606-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4606-7

Keywords