Skip to main content
Log in

Determination of the xanthate group distribution on viscose by liquid-state 1H NMR spectroscopy

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An analytical method for determination of the xanthate group distribution on viscoses based on liquid-state NMR spectroscopy was developed. Sample preparation involves stabilization of the xanthate group by allylation followed by derivatization of the remaining free hydroxyl groups at the glucose unit. The method was applied for studying (1) the γ-value (number of xanthate groups per 100 glucose units) of viscose, (2) the distribution of the xanthate groups on the anhydroglucose unit (AGU), and (3) changes of the xanthate group distribution during ripening. Results of the γ-value determination are well comparable with reference methods. Elucidation of the xanthate group distribution on the AGU gives the percentage at the C-6 position and a cumulative share of the positions C-2 and C-3. During ripening, xanthate groups at C-2 and C-3 degrade first, while xanthates at C-6 decompose at a slower rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cross CF, Bevan EJ, Beadle C (1893) Dissolution of cotton or wood cellulose as cellulose xanthate. Patent no: GB 8700

  2. Fischer K, Krasselt K, Schmidt I, Weightman D (2005) Distribution of substituents along the cellulose chain on cellulose xanthate and carboxymethyl cellulose. Macromol Symp 223:109–120

    Article  CAS  Google Scholar 

  3. Fischer K, Schmidt I, Hintze H (1994) Untersuchungen zur Substituentenverteilung in Cellulosexanthogenat. Das Papier 12:769–774

    Google Scholar 

  4. Rußler A (2005) Substituentenverteilung an Cellulosexanthogenaten. Dissertation. Universität Hamburg, Wien

    Google Scholar 

  5. Trimnell D, Doane WM, Russell CR, Rist CE (1967) Migration of thiolthiocarbonyl groups of methyl [alpha]-glucopyranoside xanthates. Carbohydr Res 5:166–175

    Article  CAS  Google Scholar 

  6. Lieser T (1928) Die Konstitution des Cellulose-Xanthogenats. Liebigs Ann Chem 464:43–55

    Article  CAS  Google Scholar 

  7. Lauer K (1950) Zur Kenntnis der Cellulosefasern. 14. Mitteilung: Die Verteilung der Xanthogenatgruppen in heterogenen xanthogenierten Cellulosen. Makromol Chem 5:287–291

    Google Scholar 

  8. Purves CB, Sanyal AK, Falconer EL, Vincent DL (1957) Attempted location of the substituent in cellulose xanthate by new methods. Can J Chem 35:1164–1173

    Article  Google Scholar 

  9. Willard JJ, Pacsu E (1960) Location of xanthate groups in viscose. J Am Chem Soc 82:4347–4349

    Article  CAS  Google Scholar 

  10. Philipp B, Bär HJ, Dautzenberg H (1966) Kinetische Untersuchungen zur Umxanthogenierung von Cellulosexanthogenat. Faserforsch Textiltechn 17:551–558

    Google Scholar 

  11. Kamide K, Kowsaka K, Okajama K (1987) 13C NMR study on the distribution of substituent groups on trihydric alcohol groups in cellulose xanthate. Polym J 19:231–240

    Article  CAS  Google Scholar 

  12. Pauli GF, Jaki BU, Lankin DC (2005) Quantitative 1H NMR: development and potential of a method for natural products analysis. J Nat Prod 68:133–149

    Article  CAS  Google Scholar 

  13. König L, Döring R, Postel S (1993) 13C-NMR-Untersuchungen an 13C-markierten Cellulosexanthogenaten. Das Papier 11:641–644

    Google Scholar 

  14. Rußler A, Lange T, Potthast A, Rosenau T, Berger-Nicoletti E, Sixta H, Kosma P (2005) A novel method for analysis of xanthate group distribution in viscoses. Macromol Symp 223:189–199

    Article  Google Scholar 

  15. Lange T, Berger-Nicoletti E, Kosma P, Potthast A, Sixta H (2003) Untersuchungen zur Bestimmung der Substituentenverteilung bei Viskosen. Lenzinger Berichte 82:102–106

    CAS  Google Scholar 

  16. Götze K (1967) Chemiefasern nach dem Viskoseverfahren. Springer, Berlin

    Google Scholar 

  17. Schleucher J, Schwendinger M, Sattler M, Schmidt P, Schedletzky O, Glaser SJ, Sørensen OW, Griesinger C (1994) A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed-field gradients. J Biomol NMR 4:301–306

    Article  CAS  Google Scholar 

  18. Cicero DO, Barbato G, Bazzo R (2001) Sensitivity enhancement of a two-dimensional experiment for the measurement of heteronuclear long-range coupling constants by a new scheme of coherence selection by gradients. J Magn Reson 148:209–213

    Article  CAS  Google Scholar 

  19. Dicke R, Rahn K, Haack V, Heinze T (2001) Starch derivatives of high degree of functionalization. Part 2. Determination of the functionalization pattern of p-toluenesulfonyl starch by peracylation and NMR spectroscopy. Carbohydr Polym 45:43–51

    Article  CAS  Google Scholar 

  20. Iwata T, Azuma J, Okamura K, Muramoto M, Chun B (1992) Preparation and NMR assignments of cellulose mixed esters regioselectively substituted by acetyl and propanoyl groups. Carbohydr Res 224:277–283

    Article  CAS  Google Scholar 

  21. Friebolin H, Deus C (1991) Partiell acetylierte Cellulose—Synthese und Bestimmung der Substituentenverteilung mit Hilfe der 1H NMR Spektroskopie. Makromol Chem 192:75–83

    Article  Google Scholar 

  22. Tezuka Y, Imai K, Oshima M, Chiba T (1987) Determination of substituent distribution in cellulose ethers by means of a 13C NMR study on their acetylated derivatives. Macromolecules 20:2413–2418

    Article  CAS  Google Scholar 

  23. Goodlett VW, Dougherty JT, Patton HW (1971) Characterization of cellulose acetates by nuclear magnetic resonance. J Polym Sci, Part A: Polym Chem 9:155–161

    Article  CAS  Google Scholar 

  24. Friebolin H, Keilich G, Seifert E (1969) Protonenresonanz-Untersuchungen an Polysaccharid-Derivaten. Angew Chem 81:791–792

    Article  Google Scholar 

  25. SDBSWeb: http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, 06/13/2010)

  26. Buchanan CM, Edgar KJ, Hyatt JA, Wilson AK (1991) Preparation of cellulose [1-13C] acetates and determination of monomer composition by NMR spectroscopy. Macromolecules 24:3050–3059

    Article  CAS  Google Scholar 

  27. Zellcheming Merkblatt III/21/72 (1972) Veresterungsgrad (Gammawert) des Cellulose-xanthogenates nach dem Ionenaustausch-Verfahren (Batch-Methode). Verein Zellcheming, Darmstadt

    Google Scholar 

  28. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry. Volume 1—fundamentals and analytical methods. Wiley, Weinheim

    Book  Google Scholar 

  29. Baldinger T, Moosbauer H, Jary S (2003) Method for the spectroscopic analysis of viscose constituents. Patent no: WO 03/062818

  30. OriginLab OriginPro 8G SR5, v8.0987 (Build 987)

Download references

Acknowledgments

Financial support was provided by the Austrian government, the provinces of lower Austria, upper Austria, and Carinthia as well as by Lenzing AG. We also express our gratitude to the University of Natural Resources and Applied Life Sciences, Vienna, and Lenzing AG for their kind contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Müller.

Additional information

Published in the special issue Analytical Sciences in Austria with Guest Editors G. Allmaier, W. Buchberger, and K. Francesconi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwaighofer, A., Zuckerstätter, G., Schlagnitweit, J. et al. Determination of the xanthate group distribution on viscose by liquid-state 1H NMR spectroscopy. Anal Bioanal Chem 400, 2449–2456 (2011). https://doi.org/10.1007/s00216-010-4570-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4570-2

Keywords

Navigation