Skip to main content
Log in

Compact, cost-efficient microfluidics-based stopped-flow device

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Stopped-flow technology is frequently used to monitor rapid (bio)chemical reactions with high temporal resolution, e.g., in dynamic investigations of enzyme reactions, protein interactions, or molecular transport mechanisms. However, conventional stopped-flow devices are often overly complex, voluminous, or costly. Moreover, excessive amounts of sample are often wasted owing to inefficient designs. To address these shortcomings, we propose a stopped-flow system based on microfluidic design principles. Our simple and cost-efficient approach offers distinct advantages over existing technology. In particular, the use of injection-molded disposable microfluidic chips minimizes required sample volumes and associated costs, simplifies handling, and prevents adverse cross-contamination effects. The cost of the system developed is reduced by an order of magnitude compared with the cost of commercial systems. The system contains a high-precision valve system for fluid control and features automated data acquisition capability with high temporal resolution. Analyses with two well-established reaction kinetics yielded a dead time of approximately 8-9 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. A PMMA 7 N layer of 2 mm blocks approximately 50% of the light at 280 nm. The optical path through the chip material has a length of 1 mm before plus 1 mm after the detection cell.

  2. The reaction was set up following a protocol described in [19] for the labeling of alanine.

References

  1. Chance B (1940) J Franklin Inst 229:455–613

    Article  CAS  Google Scholar 

  2. Gibson QH, Milnes L (1964) Biochem J 91:161

    CAS  Google Scholar 

  3. Sykora J, Meyer-Almes FJ (2010) Biochemistry 49(7):1418–1424

    Article  CAS  Google Scholar 

  4. Gabibov AG, Kochetkov SN, Sashchenko LP, Smirnov IV, Timofeev VP, Severin ES (1983) Eur J Biochem 132(2):339–344

    Article  CAS  Google Scholar 

  5. Biro FN, Zhai J, Doucette CW, Hingorani MM (2010) J Vis Exp (37):1874, doi:10.3791/1874

  6. Kern S, Riester D, Hildmann C, Schwienhorst A, Meyer-Almes FJ (2007) FEBS J 274(14):3578–3588

    Article  CAS  Google Scholar 

  7. Nienhaus U (2005) Protein-ligand interactions – methods and applications. Humana, Totowa

    Book  Google Scholar 

  8. Tonomura B, Nakatani H, Ohnishi M, Yamaguchi-Ito J, Hiromi K (1978) Anal Biochem 84:370–383

    Article  CAS  Google Scholar 

  9. Peterman BF (1979) Anal Biochem 93:442–444

    Article  CAS  Google Scholar 

  10. Guo M, Bhaskar B, Li H, Barrows TL, Poulos TL (2004) Proc Natl Acad Sci USA 101(16):5940–5945

    Article  CAS  Google Scholar 

  11. van Dael H (2003) Protein Sci 12:609–619

    Article  Google Scholar 

  12. Zhang HJ, Sheng XR, Niu WD, Pan XM, Zhou JM (1998) J Biol Chem 273:7448–7456

    Article  CAS  Google Scholar 

  13. Stumps MR, Gloss LM (2008) J Mol Biol 384:1369–1383

    Article  Google Scholar 

  14. Engel MFM, van Mierlo CPM, Visser AJWG (2002) J Biol Chem 277:10922–10930

    Article  CAS  Google Scholar 

  15. BioLogic (2010) Bio-Logic - rapid-mixing instruments. http://www.bio-logic.info/rapid-kinetics/rmi.html. Accessed 14 Sep 2010

  16. TgK Scientific (2010) High-pressure stopped-flow. http://www.hi-techsci.com/products/highpressure. Accessed 14 Sep 2010

  17. Kobayashi K, Yoshioka S, Kato Y, Asano Y, Aono S (2005) J Biol Chem 280:5486–5490

    Article  CAS  Google Scholar 

  18. Fan YX, Zhou JM, Kihara H, Tsou CL (1998) Protein Sci 7:2631–2641

    Article  CAS  Google Scholar 

  19. Stein S, Böhlen P, Udenfriend S (1974) Arch Biochem Biophys 163:400–403

    Article  CAS  Google Scholar 

  20. Brown L, Koerner T, Horton JH, Oleschuk RD (2006) Lab Chip 6:66–73

    Article  CAS  Google Scholar 

  21. Hardt S, Drese KS, Hessel V, Schönfeld F (2005) Microfluid Nanofluid 1:108–118

    Article  CAS  Google Scholar 

  22. Green J, Holdo AE, Khan A (2007) Int J Multiphys 1(1):1–32

    Article  Google Scholar 

  23. Nguyen NT, Wu Z (2005) J Micromech Microeng 15:R1–R16

    Article  Google Scholar 

  24. Hessel V, Löwe H, Schönfeld F (2005) Chem Eng Sci 60:2479–2501

    Article  CAS  Google Scholar 

  25. Falk L, Commenge JM (2010) Chem Eng Sci 65:405–411

    Article  CAS  Google Scholar 

  26. Berger RL, Balko B, Chapman HF (1968) Rev Sci Instrum 39:493–498

    Article  CAS  Google Scholar 

  27. Mansur EA, Mingxing YE, Yundong W, Youyuan D (2008) Chin J Chem Eng 16(4):503–516

    Article  CAS  Google Scholar 

  28. Bothe D, Stemich C, Warnecke HJ (2006) Chem Eng Sci 61:2950–2958

    Article  CAS  Google Scholar 

  29. Reynisson E, Josefsen MH, Krause M, Hoorfar J (2006) J Microbiol Methods 66(2):206–216

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Ritzi-Lehnert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleul, R., Ritzi-Lehnert, M., Höth, J. et al. Compact, cost-efficient microfluidics-based stopped-flow device. Anal Bioanal Chem 399, 1117–1125 (2011). https://doi.org/10.1007/s00216-010-4446-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4446-5

Keywords

Profiles

  1. Franz-Josef Meyer-Almes