Skip to main content
Log in

Static secondary ion mass spectrometry for the surface characterisation of individual nanofibres of polycaprolactone functionalised with an antibacterial additive

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Electrospinning (ES) of polymer solutions generates non-woven webs of nanofibres. The fibre diameter ranges between 10 nm and 1 μm depending on the operating conditions. Surface functionalisation can be performed by the use of suitable additives. Detailed characterisation of the molecular composition at the fibre surface is a key issue. Biodegradable nanowebs with potential antibacterial activity have been prepared by ES of solutions containing polycaprolactone (PCL) and a functionalising additive with PCL segments and hexyldimethylammonium groups (PCLhexaq). Static secondary ion mass spectrometry with Bi +3 projectiles has been applied to individual nanofibres. The positive ion mass spectra contain several signals with high structural specificity allowing the presence of PCLhexaq to be traced back in spite of its low concentration (0.16–1.4% w/w relative to PCL) and its structural similarity to the PCL fibre matrix. Imaging of structural ions visualises the homogeneous distribution of PCLhexaq over the fibre surface. Quantifying the surface concentration of PCLhexaq relative to that of PCL reveals electric field-driven surface enrichment of the additive during ES. Finally, nanofibres subjected to leaching in water for up to 72 h have been analysed. The PCLhexaq surface concentration decreases almost linearly with time at a rate of 0.6% h−1.

Electrospinning is used to produce aligned nanofibres of polycaprolactone with functionalizing additives. Advanced S-SIMS is used for identification, quantification and imaging of the distribution of the additive and for the determination of the leaching kinetics

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rutledge GC, Fridrikh SV (2007) Adv Drug Deliv Rev 59:1384–1391

    Article  CAS  Google Scholar 

  2. Yoo HS, Kim TG, Park TG (2009) Adv Drug Deliv Rev 61:1033–1042

    Article  CAS  Google Scholar 

  3. Sill TJ, von Recum HA (2008) Biomaterials 29:1989–2006

    Article  CAS  Google Scholar 

  4. Agarwal S, Wendorff JGH, Greiner A (2009) Adv Mater 21:3343–3351

    Article  CAS  Google Scholar 

  5. Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Biotech Adv 28:142–150

    Article  CAS  Google Scholar 

  6. Zahedi P, Rezaeian I, Ranaei-Siadat S-O, Jafari S-H, Supaphol P (2009) Polym Adv Technol 21:77–95

    Google Scholar 

  7. Ding B, Eang M, Yu J, Sun G (2009) Sensors 9:1609–1624

    Article  CAS  Google Scholar 

  8. Iskandar F (2009) Adv Powder Technol 20:283–292

    Article  CAS  Google Scholar 

  9. Lin T, Wang X (2009) Int J Nanotechnol 5–6:579–598

    Article  Google Scholar 

  10. Lin K, Chua KN, Christopherson GT, Lim S, Mao HQ (2007) Polymer 48:6384–6394

    Article  CAS  Google Scholar 

  11. Lin T, Wang H, Wang H, Wang X (2004) Effect of surfactants on the formation of fibre beads during the electrospinning of polystyrene nanofibres. Proceedings of Polymer Fibres, 14–16 July 2004, Springer, Manchester, UK

  12. Van Royen P, Schacht E, Ruys L, Van Vaeck L (2006) Rapid Commun Mass Spectrom 20:346–52

    Article  Google Scholar 

  13. Van Royen P, Schacht E, Ruys L, Van Vaeck L (2006) Talanta 71:1464–1469

    Article  Google Scholar 

  14. Adriaens A, Van Vaeck L, Adams F (1999) Mass Spectrom Rev 18:48–81

    Article  Google Scholar 

  15. Vickerman JC, Briggs D (2001) ToF-SIMS: surface analysis by mass spectrometry. SurfaceSpectra Ltd, Manchester, UK, p 778

  16. Winograd N, Postawa Z, Cheng J, Szakal C, Kozole J, Garrison BJ (2006) Appl Surf Sci 252:6836–6843

    Article  CAS  Google Scholar 

  17. Seah MP, Green FM, Gilmore IS (2010) J Am Soc Mass Spectrom 21:270–377

    Article  Google Scholar 

  18. Breitenstein D, Rommel CE, Stilwijk J, Wegener J, Hagenhoff B (2008) Appl Surf Sci 255:1249–1255

    Article  CAS  Google Scholar 

  19. Park D, Wang J, Klibanov AM (2006) Biotechnol Prog 22:584–289

    Article  CAS  Google Scholar 

  20. Van Royen P, Taranu A, Van Vaeck L (2005) Rapid Commun Mass Spectrom 19:552–560

    Article  Google Scholar 

  21. Sun X-Y, Shankar R, Börner HG, Ghosh TK, Spontak RJ (2007) Adv Mater 19:87–91

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Solvay (Brussels, Belgium) for providing PCL. This research was funded by the Flemish Fund for Scientific Research (FWO Vlaanderen) and the European Community project Flexifunbar (EU-IP-project 505864).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Van Vaeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Royen, P., Boschmans, B., dos Santos, A. et al. Static secondary ion mass spectrometry for the surface characterisation of individual nanofibres of polycaprolactone functionalised with an antibacterial additive. Anal Bioanal Chem 399, 1163–1172 (2011). https://doi.org/10.1007/s00216-010-4433-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4433-x

Keywords

Navigation