Skip to main content
Log in

Comparison and characterization of polysaccharides from natural and cultured Cordyceps using saccharide mapping

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Comparison and characterization of polysaccharides from natural and cultured Cordyceps on the basis of their chemical characteristics such as glycosidic linkages were performed for the first time using saccharide mapping. The results showed that polysaccharides from most of the natural and cultured Cordyceps had similar responses to enzymatic digestion. These polysaccharides mainly contained (1→4)-β-D-glucosidic linkages, and (1→4)-α-glucosidic, (1→6)-α-glucosidic, 1,4-β-D-mannosidic, as well as (1→4)-α-D-galactosiduronic linkages also existed in some polysaccharides. Especially, natural and cultured Cordyceps polysaccharides could be discriminated on the basis of high performance liquid chromatography profiles of pectinase hydrolysates, which is helpful to control the quality of polysaccharides from Cordyceps.

The procedure and typical profile of saccharide mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DAD:

diode-array detection

ELSD:

evaporative light scattering detector

ESI:

electrospray ionization

FrA:

fraction A

FrB:

fraction B

HPLC:

high-performance liquid chromatography

HPSEC:

high-performance size-exclusion chromatography

LC:

liquid chromatography

MS:

mass spectrometry

PMP:

1-phenyl-3-methyl-5-pyrazolone

WSPC:

water-soluble polysaccharides from Cordyceps

References

  1. The State Pharmacopoeia Commission of People Republic of China (2005) Pharmacopoeia of the People’s Republic of China, vol. 1. Chemical Industry Press, Beijing

    Google Scholar 

  2. Zhou XW, Gong ZH, Su Y, Lin J, Tang KX (2009) J Pharm Pharmacol 61:279–291

    Article  CAS  Google Scholar 

  3. Ng TB, Wang HX (2005) J Pharm Pharmacol 57:1509–1519

    Article  CAS  Google Scholar 

  4. Li SP, Yang FQ (2008) In: Li SP, Wang YT (eds) Pharmacological activity-based quality control of Chinese herbs. Nova, New York

    Google Scholar 

  5. Li SP, Li P, Dong TTX, Tsim KWK (2001) Electrophoresis 22:144–150

    Article  CAS  Google Scholar 

  6. Li SP, Li P, Lai CM, Gong YX, Kan KKW, Dong TTX, Tsim KWK, Wang YT (2004) J Chromatogr A 1036:239–243

    Article  CAS  Google Scholar 

  7. Li SP, Song ZH, Dong TTX, Ji ZN, Lo CK, Zhu SQ, Tsim KWK (2004) Phytomedicine 11:684–690

    Article  CAS  Google Scholar 

  8. Gong YX, Li SP, Li P, Liu JJ, Wang YT (2004) J Chromatogr A 1055:215–221

    Article  CAS  Google Scholar 

  9. Yu L, Zhao J, Li SP, Fan H, Hong M, Wang YT, Zhu Q (2006) J Sep Sci 29:953–958

    Article  CAS  Google Scholar 

  10. Fan H, Li SP, Xiang JJ, Lai CM, Yang FQ, Gao JL, Wang YT (2006) Anal Chim Acta 567:218–228

    Article  CAS  Google Scholar 

  11. Yang FQ, Li SP, Li P, Wang YT (2007) Electrophoresis 28:1681–1688

    Article  CAS  Google Scholar 

  12. Yang FQ, Guan J, Li SP (2007) Talanta 73:269–273

    Article  CAS  Google Scholar 

  13. Yang FQ, Feng K, Zhao J, Li SP (2009) J Pharm Biomed Anal 49:1172–1178

    Article  CAS  Google Scholar 

  14. Wang S, Yang FQ, Feng Q, Li DQ, Zhao J, Li SP (2009) J Sep Sci 32:4069–4076

    Article  CAS  Google Scholar 

  15. Guan J, Yang FQ, Li SP (2010) Molecules 15:4227–4241

    Article  CAS  Google Scholar 

  16. Leung PH, Zhao S, Ho KP, Wu JY (2009) Food Chem 114:1251–1256

    Article  CAS  Google Scholar 

  17. Zhu ZY, Si CL, Zhang YM (2009) Planta Med 75:942–943

    Article  Google Scholar 

  18. Li SP, Zhao KJ, Ji ZN, Song ZH, Dong TTX, Lo CK, Cheung JKH, Zhu SQ, Tsim KWK (2003) Life Sci 73:2503–2513

    Article  CAS  Google Scholar 

  19. Li SP, Zhang GH, Zeng Q, Huang ZG, Wang YT, Dong TTX, Tsim KWK (2006) Phytomedicine 13:428–433

    Article  Google Scholar 

  20. Lee JS, Kwon JS, Yun JS, Pahk JW, Shin WC, Lee SY, Hong EK (2010) Carbohydr Polym 80:1011–1017

    Article  CAS  Google Scholar 

  21. Li SP, Yang FQ, Tsim KWK (2006) J Pharm Biomed Anal 41:1571–1584

    Article  CAS  Google Scholar 

  22. Zhong S, Pan HJ, Fan LF, Lv GY, Wu YZ, Parmeswaran B, Pandey A, Soccol CR (2009) Food Technol Biotechnol 47:304–312

    CAS  Google Scholar 

  23. Li SP, Zhang P, Xia Q, Huang ZG, Zhu Q (2003) Yao Wu Fen Xi Za Zhi 23:20–23

    CAS  Google Scholar 

  24. Li SP, Li P, Ji H, Zeng Q, Wu ZB (1999) Zhongguo Ye Sheng Zhi Wu Zi Yuan 6:47–48

    Google Scholar 

  25. Guan J, Li SP (2010) J Pharm Biomed Anal 51:590–598

    Article  CAS  Google Scholar 

  26. Larner J (1960) In: Boyer PD, Lardy H, Myrbäck K (eds) The enzymes. Academic, New York

    Google Scholar 

  27. Barras DR, Moore AE, Stone BA (1969) In: Hajny GJ, Reese ET (eds) Cellulases and their applications. American Chemical Society, Washington

    Google Scholar 

  28. Manners DJ (1962) In: Wolfrom ML, Tipson RS (eds) Advances in carbohydrate chemistry. Academic, San Diego

    Google Scholar 

  29. Schwimmer S, Balls AK (1949) J Biol Chem 179:1063–1074

    CAS  Google Scholar 

  30. Taniguchi H, Honnda Y (2009) In: Schaechter M (ed) Encyclopedia of microbiology. Academic, San Diego

    Google Scholar 

  31. Yokobayashi K, Misaki A, Harada T (1970) Biochim Biophys Acta 212:458–469

    CAS  Google Scholar 

  32. Bailey RW, Clarke RTJ (1959) Biochem J 72:49–54

    CAS  Google Scholar 

  33. Van Zyla WH, Rosea SH, Trollopeb K, Görgens JF (2010) Process Biochem 45:1203–1213

    Article  Google Scholar 

  34. Moreira LRS, Filho EXF (2008) Appl Microbiol Biotechnol 79:165–178

    Article  CAS  Google Scholar 

  35. McCready RM, Seegmiller CG (1954) Arch Biochem Biophys 50:440–450

    Article  CAS  Google Scholar 

  36. Mill PJ, Tuttobello R (1961) Biochem J 79:57–64

    CAS  Google Scholar 

  37. Phaff HJ, Demain AL (1956) J Biol Chem 218:875–884

    CAS  Google Scholar 

  38. Meyer K, Hoffman P, Linker A (1960) In: Boyer PD, Lardy H, Myrbäck K (eds) The enzymes. Academic, New York

    Google Scholar 

  39. Rapport MM, Myer K, Linker A (1951) J Am Chem Soc 73:2416–2420

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Natural Science Foundation of China (no. 30928033), the Science and Technology Development Fund of Macao (028/2006/A2), and the University of Macau (UL015A/09-Y2) to S.P.Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Ping Li.

Additional information

Jia Guan, Jing Zhao and Kun Feng contributed equally to this work.

Published in the special issue Analytical and Bioanalytical Science in China with Guest Editors Lihua Zhang, Qiankun Zhuang and Yukui Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 109 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, J., Zhao, J., Feng, K. et al. Comparison and characterization of polysaccharides from natural and cultured Cordyceps using saccharide mapping. Anal Bioanal Chem 399, 3465–3474 (2011). https://doi.org/10.1007/s00216-010-4396-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4396-y

Keywords

Navigation