Analytical and Bioanalytical Chemistry

, Volume 399, Issue 3, pp 1061–1069 | Cite as

A rapid and reversible colorimetric assay for the characterization of aminated solid surfaces

  • Gaëlle Coussot
  • Catherine Perrin
  • Thomas Moreau
  • Michel Dobrijevic
  • Aurélie Le Postollec
  • Odile Vandenabeele-Trambouze
Original Paper

Abstract

The covalent immobilization of synthetic or natural macromolecular compounds containing amino groups onto polystyrene (PS) solid surfaces is of great interest in diagnostic applications. A sensitive assay allowing the determination of reactive end groups is therefore a powerful tool for predicting the performance of the active surface. Recently, we reported the use of the Coomassie brilliant blue (CBB) colorimetric reagent to quantify protonated groups (N+) in linear and dendritic structures in solution (Coussot et al., Polym Int 58(5):511–518, 2009). In this work, a simple method using CBB dye for the characterization of PS aminated solid surfaces is developed. The proposed amino density estimation by colorimetric assay (ADECA) method is based on the reversible complexation of the dye with the N+ groups on solid surfaces. The assay measures the released dye thanks to the use of a unique sodium carbonate–methanol buffer. Thereby, for the first time, the same surface can be used for characterization and for further coupling applications. A surface density of four N+ groups per square nanometer can be measured in PS microwell format, the whole characterization being done within 30 min. Performances of this new colorimetric-based method are detailed. The ADECA method is further demonstrated to be useful for the characterization of aminated polypropylene and glass materials with various sizes and shapes.

Figure

“ADECA principle” Adeca priciple for the characterization of aminated surfaces

Keywords

Coomassie blue Quantification Amine density Solid support characterization ADECA 

References

  1. 1.
    Singh P (2001) Dendrimer-based biological reagents: preparation and applications in diagnostics. In: Fréchet JMJ, and Tomalia DA (eds) Dendrimers and other dendritic polymers, vol 19. John Wiley & Sons, Chichester UK, pp 463–484Google Scholar
  2. 2.
    Lee SC (2001) Dendrimer in Nanobiological devices. In: Fréchet JMJ and Tomalia DA (eds) Dendrimers and other dendritic polymers, vol 22. John Wiley & Sons, Chichester UK, pp 547–557Google Scholar
  3. 3.
    Andresen H, Grötzinger C (2009) Deciphering the antibodyonme-peptide arrays for serum antibody biomarker diagnostics. Curr Proteomics 6:1–12CrossRefGoogle Scholar
  4. 4.
    Yu X, Schneiderhan-Marra N, Hsu HY, Bachmann J, Joos TO (2009) Protein microarrays: effective tools for the study of inflammatory diseases. Meth Mol Biol 577:199–214CrossRefGoogle Scholar
  5. 5.
    Pesce A, Rosenthal M, West R, Crews B, Mikel C, Almazan P, Latyshev S, Horn PS (2010) An evaluation of the diagnostic accuracy of liquid chromatography-tandem mass spectrometry versus immunoassay drug testing in pain patients. Pain Physician 13(3):273–281Google Scholar
  6. 6.
    Stubenrauch K, Wessels U, Vogel R, Schleypen J (2009) Evaluation of a biosensor immunoassay for simultaneous characterization of isotype and binding region of human anti-tocilizumab antibodies with control by surrogate standards. Anal Biochem 390(2):189–196CrossRefGoogle Scholar
  7. 7.
    Weinrich D, Jonkheijm P, Niemeyer CM, Waldmann H (2009) Applications of protein biochips in biomedical and biotechnological research. Angew Chem Int Ed Engl 48(42):7744–7751CrossRefGoogle Scholar
  8. 8.
    Spisák S, Guttman A (2009) Biomedical applications of protein microarrays. Curr Med Chem 16(22):2806–2815CrossRefGoogle Scholar
  9. 9.
    Schiestel T, Brunner H, Tovar GE (2004) Controlled surface functionalization of silica nanospheres by covalent conjugation reactions and preparation of high density streptavidin nanoparticles. J Nanosci Nanotechnol 4(5):504–511CrossRefGoogle Scholar
  10. 10.
    Ngo TT (1986) A simple spectrophotometric determination of solid supported amino groups. J Biochem Biophys Methods 12(5–6):349–354CrossRefGoogle Scholar
  11. 11.
    Gaur RK, Paliwal S, Sharma P, Gupta KC (1989) A simple and sensitive spectrophotometric method for the quantitative determination of solid supported amino groups. J Biochem Biophys Methods 18(4):323–330CrossRefGoogle Scholar
  12. 12.
    Rao NS, Agarwal SK, Chauhan VK, Bhatia D, Sharma AK, Kumar P, Garg BS, Gupta KC (2000) Microwave-assisted spectrophotometric estimation of polymer-supported functional groups using a universal reagent. Anal Chim Acta 405:247–254CrossRefGoogle Scholar
  13. 13.
    Gaur RK, Gupta KC (1989) A spectrophotometric method for the estimation of amino groups on polymer supports. Anal Biochem 180(2):253–258CrossRefGoogle Scholar
  14. 14.
    Mahajan S, Garg A, Goel M, Kumar P, Gupta KC (2006) Spectrophotometric estimation of functional groups on microslides for preparation of biochips. Anal Biochem 351(2):273–281CrossRefGoogle Scholar
  15. 15.
    Coussot G, Vandenabeele-Trambouze O, Desvignes I, Dobrijevic M, Le Postollec A, Chazalnoël P (2009) In INPI, PCT/EP2009/052637, FranceGoogle Scholar
  16. 16.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  17. 17.
    Neuhoff V, Stamm R, Eibl H (1985) Clear background and highly sensitive protein staining with Coomassie blue dyes in polyacrylamide gels: a systematic analysis. Electrophoresis 6(9):427–448CrossRefGoogle Scholar
  18. 18.
    Sreeramulu G, Singh NK (1985) Destaining of Coomassie brilliant blue R-250-stained polyacrylamide gels with sodium chloride solutions. Electrophoresis 16(3):362–365Google Scholar
  19. 19.
    Compton SJ, Jones CG (1985) Mechanism of dye response and interference in the Bradford protein assay. Anal Biochem 151(2):369–374CrossRefGoogle Scholar
  20. 20.
    Georgiou CD, Grintzalis K, Zervoudakis G, Papapostolou I (2008) Mechanism of Coomassie brilliant blue G-250 binding to proteins: a hydrophobic assay for nanogram quantities of proteins. Anal Bioanal Chem 391(1):391–403CrossRefGoogle Scholar
  21. 21.
    Coussot G, Nicol E, Commeyras A, Desvignes I, Pascal R, Vandenabeele-Trambouze O (2009) Colorimetric quantification of amino groups in linear and dendritic structures. Polym Int 58(5):511–518CrossRefGoogle Scholar
  22. 22.
    Read SM, Northcote DH (1981) Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein. Anal Biochem 116(1):53–64CrossRefGoogle Scholar
  23. 23.
    Chial HJ, Splittgerber AG (1993) A comparison of the binding of Coomassie brilliant blue to proteins at low and neutral pH. Anal Biochem 213(2):362–369CrossRefGoogle Scholar
  24. 24.
    Neuhoff V, Stamm R, Pardowitz I, Arold N, Ehrhardt W, Taube D (1990) Essential problems in quantification of proteins following colloidal staining with Coomassie brilliant blue dyes in polyacrylamide gels, and their solution. Electrophoresis 11(2):101–117CrossRefGoogle Scholar
  25. 25.
    Benters R, Niemeyer CM, Wöhrle D (2001) Dendrimer-activated solid supports for nucleic acid and protein microarrays. Chembiochem 2(9):686–694CrossRefGoogle Scholar
  26. 26.
    Rasmussen SE (1990) Covalent immobilization of biomolecules onto polystyrene microwells for use in biospecific assays. Ann Biol Clin Paris 48(9):647–650Google Scholar
  27. 27.
    Chial HJ, Thompson HB, Splittgerber AG (1993) A spectral study of the charge forms of Coomassie blue G. Anal Biochem 209(2):258–266CrossRefGoogle Scholar
  28. 28.
    Vandenabeele-Trambouze O, Claeys-Bruno M, Dobrijevic M, Rodier C, Borruat G, Commeyras A, Garrelly L (2005) Comparison of methods for measurement of organic compounds at ultra-trace level: analytical criteria and application to analysis of amino acids in extraterrestrial samples. Astrobiology 5(1):48–65CrossRefGoogle Scholar
  29. 29.
    Basarir F, Cuong N, Song W-K, Yoon T-H (2007) Surface modification via plasma polymerization of allylamine for antibody immobilization. Macromol Symp 249–250(1):61–66CrossRefGoogle Scholar
  30. 30.
    Harlow K, Pfundheller HM (2010) Technical note no. 43. Thermo scientific nunc immobilizer amino surface. Protocol for coupling proteins. Available at http://www.nuncbrand.com
  31. 31.
    Sedmak JJ, Grossberg SE (1977) A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem 79(1–2):544–552CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Gaëlle Coussot
    • 1
  • Catherine Perrin
    • 1
  • Thomas Moreau
    • 1
  • Michel Dobrijevic
    • 2
  • Aurélie Le Postollec
    • 2
  • Odile Vandenabeele-Trambouze
    • 1
  1. 1.Institut des Biomolécules Max MousseronUMR 5247, CNRS-Université de Montpellier 1-Université de Montpellier 2Montpellier Cedex 5France
  2. 2.Laboratoire d’Astrophysique de Bordeaux (LAB)UMR 5804, CNRS/INSU-Université Bordeaux 1FloiracFrance

Personalised recommendations