Skip to main content

Advertisement

Log in

How to design cell-based biosensors using the sol–gel process

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Inorganic gels formed using the sol–gel process are promising hosts for the encapsulation of living organisms and the design of cell-based biosensors. However, the possibility to use the biological activity of entrapped cells as a biological signal requires a good understanding and careful control of the chemical and physical conditions in which the organisms are placed before, during, and after gel formation, and their impact on cell viability. Moreover, it is important to examine the possible transduction methods that are compatible with sol–gel encapsulated cells. Through an updated presentation of the current knowledge in this field and based on selected examples, this review shows how it has been possible to convert a chemical technology initially developed for the glass industry into a biotechnological tool, with current limitations and promising specificities.

Optical fluorescence image of living bacteria in silica thin films

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brinker CJ, Scherrer G (1990) The physics and chemistry of sol-gel processing. Academic, Boston

    Google Scholar 

  2. Sakka S (ed) (2005) Handbook of sol-gel technology. Kluwer, Norwell

    Google Scholar 

  3. Gomez-Romero P, Sanchez C (eds) (2004) Functional hybrid materials. Wiley-VCH, Weinheim

    Google Scholar 

  4. Johnson P, Whateley TL (1971) J Colloid Interface Sci 37:557–563

    Article  CAS  Google Scholar 

  5. Gill I, Ballesteros A (2000) Trends Biotechnol 18:282–296

    Article  CAS  Google Scholar 

  6. Jin W, Brennan JD (2002) Anal Chim Acta 461:1–36

    Article  CAS  Google Scholar 

  7. Pierre AC (2004) Biocatal Biotransform 22:145–170

    Article  CAS  Google Scholar 

  8. Avnir D, Coradin T, Lev O, Livage J (2006) J Mater Chem 16:1013–1030

    Article  CAS  Google Scholar 

  9. Livage J, Coradin T (2006) Rev Mineral Geochem 64:315–332

    Article  CAS  Google Scholar 

  10. Coradin T, Amoura M, Roux C, Livage J (2010) In: Flickinger MC (ed) Encyclopedia of industrial biotechnology, bioprocess, bioseparation, and cell technology. Wiley, Hoboken, pp 567–581

    Google Scholar 

  11. Böttcher H, Soltmann U, Mertig M, Pompe W (2004) J Mater Chem 14:2176–2188

    Article  Google Scholar 

  12. Carturan G, Dal Toso R, Boninsegna S, Dal Monte R (2004) J Mater Chem 14:2087–2098

    Article  CAS  Google Scholar 

  13. Meunier CF, Rooke JC, Léonard A, Xie H, Su BL (2010) Chem Commun 3843–3859

  14. Livage J (1997) Curr Opin Solid State Mater Sci 2:132–138

    Article  CAS  Google Scholar 

  15. Avnir D, Kaufman VR (1987) J Non-Cryst Solids 192:180–182

    Article  Google Scholar 

  16. Ellerby LM, Nishida CR, Nishida F, Yamanaka SA, Dunn B, Valentine JS, Zink JI (1992) Science 255:1113–1115

    Article  CAS  Google Scholar 

  17. Brasack I, Böttcher H, Hempel U (2000) J Sol-Gel Sci Technol 19:479–482

    Article  CAS  Google Scholar 

  18. Ferrer ML, del Monte F, Levy D (2002) Chem Mater 14:3619–3621

    Article  CAS  Google Scholar 

  19. Gautier C, Coradin T, Livage J, Lopez PJ (2006) Chem Commun 4611–4613

  20. Bhatia RB, Brinker CJ, Gupta AK, Singh AK (2000) Chem Mater 12:2434–2441

    Article  CAS  Google Scholar 

  21. Finnie KS, Bartlett JR, Woolfrey JL (2000) J Mater Chem 10:1099–1101

    Article  CAS  Google Scholar 

  22. Amoura M, Nassif N, Roux C, Livage J, Coradin T (2007) Chem Commun 4015-4017

  23. Amoura M, Brayner R, Perullini M, Sicard C, Roux C, Livage J, Coradin T (2009) J Mater Chem 19:1241–1244

    Article  CAS  Google Scholar 

  24. Kessler VG, Seisenbaeva GA, Unell M, Hakansson S (2008) Angew Chem Int Ed 47:8506–8509

    Article  CAS  Google Scholar 

  25. Amoura M, Roux C, Masse S, Steunou N, Coradin T (2010) C R Chim 13:52–57

    Article  CAS  Google Scholar 

  26. Nassif N, Bouvet O, Rager MN, Roux C, Coradin T, Livage J (2002) Nat Mater 1:42–44

    Article  CAS  Google Scholar 

  27. Coiffier A, Coradin T, Roux C, Bouvet OMM, Livage J (2001) J Mater Chem 11:2039–2044

    Article  CAS  Google Scholar 

  28. Meunier CF, Van Cutsem P, Kwon YU, Su BL (2009) J Mater Chem 19:4131–4137

    Article  CAS  Google Scholar 

  29. Meunier CF, Rooke JC, Hajdu K, Van Cutsem P, Cambier P, Léonard A, Su BL (2010) Langmuir 26:6568–6575

    Article  CAS  Google Scholar 

  30. Gautier C, Ponton A, Livage J, Lopez PJ, Coradin T (2009) J Sol-Gel Sci Technol 50:164–169

    Article  CAS  Google Scholar 

  31. Alvarez GS, Desimone MF, Diaz LE (2007) Appl Microbiol Biotechnol 73:1059–1064

    Article  CAS  Google Scholar 

  32. Müller WEG, Engel S, Wang X, Wolf SE, Tremel W, Thakur NL, Krasko A, Divekar M, Schröder HC (2008) Biomaterials 29:771–779

    Article  Google Scholar 

  33. Yang SH, Lee HB, Kong B, Kim JH, Kim HS, Choi IS (2009) Angew Chem Int Ed 48:9160–9163

    Article  CAS  Google Scholar 

  34. Soltmann U, Böttcher H (2008) J Sol-Gel Sci Technol 48:66–72

    Article  CAS  Google Scholar 

  35. Ferrer ML, Garcia-Carvajal ZY, Yuste L, Rojo F, del Monte F (2006) Chem Mater 18:1458–1463

    Article  CAS  Google Scholar 

  36. Baca HK, Carnes E, Singh S, Ashley C, Lopez D, Brinker CJ (2007) Acc Chem Res 40:836–845

    Article  CAS  Google Scholar 

  37. Tessema DA, Rosen R, Pedazur R, Belkin S, Gun J, Ekeltchik E, Lev O (2006) Sens Actuators B 113:768–773

    Article  Google Scholar 

  38. Perullini M, Jobbagy M, Soler-Illia GJAA, Bilmes SA (2005) Chem Mater 17:3806–3808

    Article  CAS  Google Scholar 

  39. Coradin T, Allouche J, Boissière M, Livage J (2006) Curr Nanosci 2:219–230

    CAS  Google Scholar 

  40. Desimone M, Hélary C, Rietveld IB, Bataille I, Mosser G, Giraud-Guille MM, Livage J, Coradin T (2010) Acta Biomater 6:3998–4004

    Article  CAS  Google Scholar 

  41. Matys S, Raff J, Soltmann U, Slenska-Pobell S, Böttcher H, Pompe W (2004) Chem Mater 16:5549–5551

    Article  CAS  Google Scholar 

  42. Premkumar JR, Lev O, Rosen R, Belkin S (2001) Adv Mater 13:1773–1775

    Article  CAS  Google Scholar 

  43. Desimone MF, De Marzi MC, Copello GJ, Fernandez MM, Pieckenstain FL, Malchiodi EL, Diaz LE (2006) Enzyme Microb Technol 40:168–171

    Article  CAS  Google Scholar 

  44. Chen J, Xu Y, Xin J, Li S, Xia C, Cui J (2004) J Mol Catal B 30:167–172

    Article  CAS  Google Scholar 

  45. Yu D, Volponi J, Chhabra S, Brinker CJ, Mulchandani A, Singh AK (2005) Biosens Bioelectron 20:1433–1437

    Article  CAS  Google Scholar 

  46. Liu L, Shang L, Guo S, Li D, Liu C, Qi L, Dong S (2009) Biosens Bioelectron 25:523–526

    Article  Google Scholar 

  47. Nguyen-Ngoc H, Tran-Minh C (2007) Anal Chim Acta 583:161–165

    Article  CAS  Google Scholar 

  48. Sicard C, Brayner R, Margueritat J, Hémadi M, Couté A, Yéprémian C, Djediat C, Aubard J, Fiévet F, Livage J, Coradin T (2010) J Mater Chem. doi:10.1039/C0JM01735C

    Google Scholar 

  49. Kataoka K, Nagao Y, Nukui T, Akiyama I, Tsuru K, Hayakawa S, Osaka A, Huh N (2005) Biomaterials 26:2509–2516

    Article  CAS  Google Scholar 

  50. Pena-Vazquez E, Maneiro E, Perez-Conde C, Moreno-Bondi MC, Costas E (2009) Biosens Bioelectron 24:3538–3543

    Article  CAS  Google Scholar 

  51. Nguyen-Ngoc H, Durrieu C, Tran-Minh C (2009) Ecotoxicol Environ Saf 72:316–320

    Article  CAS  Google Scholar 

  52. Premkumar JR, Rosen R, Belkin S, Lev O (2002) Anal Chim Acta 462:11–23

    Article  Google Scholar 

  53. Sagi E, Hever N, Rosen R, Bartolome AJ, Premkumar JR, Ulber R, Lev O, Scheper T, Belkin S (2003) Sens Actuators B 90:2–8

    Article  Google Scholar 

  54. Perullini M, Jobaggy M, Bermudez M, Garcia Correa S, Bilmes SA (2008) Chem Mater 20:3015–3021

    Article  CAS  Google Scholar 

  55. Fiedler D, Hager U, Franke H, Soltmann U, Böttcher H (2007) J Mater Chem 17:261–266

    Article  CAS  Google Scholar 

  56. Barreau JY, Da Costa JM, Desportes I, Livage J, Monjour L, Gentilini M (1994) C R Acad Sci Paris 317:653–657

    CAS  Google Scholar 

  57. Copello GJ, De Marzi MC, Desimone MF, Malchiodi EL, Diaz LE (2008) J Immunol Methods 335:65–70

    Article  CAS  Google Scholar 

  58. Nieto A, Areva S, Wilson T, Vitala R, Vallet-Regi M (2009) Acta Biomater 5:3478–3487

    Article  CAS  Google Scholar 

  59. Boninsegna S, Dal Toso R, Dal Monte R, Carturan G (2003) J Sol-Gel Sci Technol 26:1151–1157

    Google Scholar 

  60. Nassif N, Roux C, Coradin T, Bouvet OMM, Livage J (2004) J Mater Chem 14:2264–2268

    Article  CAS  Google Scholar 

  61. Carnes EC, Lopez DM, Donegan NP, Cheung A, Gresham H, Timmins GS, Brinker CJ (2010) Nat Chem Biol 6:41–45

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The postdoctoral grant for C.D. was funded by the E!4289 Silibacts project from the Eurostars program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibaud Coradin.

Additional information

Published in the special issue Microorganisms for Analysis with Guest Editor Gérald Thouand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Depagne, C., Roux, C. & Coradin, T. How to design cell-based biosensors using the sol–gel process. Anal Bioanal Chem 400, 965–976 (2011). https://doi.org/10.1007/s00216-010-4351-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4351-y

Keywords

Navigation