Analytical and Bioanalytical Chemistry

, Volume 399, Issue 1, pp 127–131 | Cite as

Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles

  • Madeline Shuhua Goh
  • Martin PumeraEmail author
Original Paper


The detection of explosives in seawater is of great interest. We compared response single-, few-, and multilayer graphene nanoribbons and graphite microparticle-based electrodes toward the electrochemical reduction of 2,4,6-trinitrotoluene (TNT). We optimized parameters such as accumulation time, accumulation potential, and pH. We found that few-layer graphene exhibits about 20% enhanced signal for TNT after accumulation when compared to multilayer graphene nanoribbons. However, graphite microparticle-modified electrode provides higher sensitivity, and there was no significant difference in the performance of single-, few-, and multilayer graphene nanoribbons and graphite microparticles for the electrochemical detection of TNT. We established the limit of detection of TNT in untreated seawater at 1 μg/mL.


Graphene for detection of TNT based explosives


Electrochemistry Sensors Explosives 



This work was partially supported by MINDEF-NTU-JPP/10/07 grant from the Ministry of Defense, Singapore and NAP start-up fund (grant no. M58110066) provided by NTU.


  1. 1.
    Royds D, Lewis SW, Taylor AM (2005) Talanta 67:262CrossRefGoogle Scholar
  2. 2.
    Anderson GP, Moreira SC, Charles PT, Medintz IL, Goldman ER, Zeinali M, Taitt CR (2006) Anal Chem 78(7):2279CrossRefGoogle Scholar
  3. 3.
    Pinsino A, Della TC, Sammarini V, Bonaventura R, Amato E, Matranga V (2008) Cell Biol Tox 24(6):541CrossRefGoogle Scholar
  4. 4.
    Basova EY, Goryacheva IY, Mikhirev DA, Rusanova TY, Burmistrova NA, Kerkaert B, Cucu T, De Saeger S, De Meulenaer B (2009) Anal Methods 1(3):170CrossRefGoogle Scholar
  5. 5.
    Smith RG, D’Souza N, Nicklin S (2008) Analyst 133(5):571CrossRefGoogle Scholar
  6. 6.
    USEPA (1992) Test methods for evaluating solid waste, proposed update II, Method 8330. EPA Report SW846, 3rd edn. US Environmental Protection Agency, Washington, DC, November 1992Google Scholar
  7. 7.
    Pumera M (2006) Electrophoresis 27:244CrossRefGoogle Scholar
  8. 8.
    Pumera M (2008) Electrophoresis 29:269CrossRefGoogle Scholar
  9. 9.
    Wang J, Pumera M (2006) Talanta 69:984CrossRefGoogle Scholar
  10. 10.
    Wang J, Pumera M (2002) Anal Chem 74:5919CrossRefGoogle Scholar
  11. 11.
    Bratin K, Kissinger PT, Briner RC, Bruntlett CS (1981) Anal Chim Acta 130:295CrossRefGoogle Scholar
  12. 12.
    Wang J (2004) Anal Chim Acta 507:3CrossRefGoogle Scholar
  13. 13.
    Pumera M (2009) Chem Rec 9:211CrossRefGoogle Scholar
  14. 14.
    Pumera M (2010) Chem Soc Rev 39:4146CrossRefGoogle Scholar
  15. 15.
    Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Electroanal 22:1027Google Scholar
  16. 16.
    Pumera M, Ambrosi A, Bonanni A, Chang ELK, Poh HL (2010) Trends Anal Chem 9:954CrossRefGoogle Scholar
  17. 17.
    Goh MS, Pumera M (2010) Chem Asian J. doi: 10.1002/asia.201000437
  18. 18.
    Goh MS, Pumera M (2010) Electrochem Commun 12:1375CrossRefGoogle Scholar
  19. 19.
    Geim AK, Novoselov KS (2007) Nat Mater 6:183CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Ambrosi A, Sasaki T, Pumera M (2010) Chem Asian J 5:266CrossRefGoogle Scholar
  22. 22.
    Goh MS, Pumera M (2010) Anal Chem 82:8367CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Division of Chemistry & Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore

Personalised recommendations