Skip to main content
Log in

Synthesis and analytical characterisation of copper-based nanocoatings for bioactive stone artworks treatment

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript


Biological agents play an important role in the deterioration of cultural heritage causing aesthetic, biogeophysical and biogeochemical damages. Conservation is based on the use of preventive and remedial methods. The former aims at inhibiting biological attack, and the latter aims at eradicating the biological agents responsible for biodeterioration. Here, we propose the preparation and the analytical characterisation of copper-based nanocoating, capable of acting both as a remedy and to prevent microbial proliferation. Core–shell CuNPs are mixed with a silicon-based product, commonly used as a water-repellent/consolidant, to obtain a combined bioactive system to be applied on stone substrates. The resulting coatings exert a marked biological activity over a long period of time due to the continuous and controlled release of copper ions acting as biocides. To the best of our knowledge, this is the first time that a multifunctional material is proposed, combining the antimicrobial properties of nanostructured coatings with those of the formulations applied to the restoration of stone artworks. A complete characterisation based on a multi-technique analytical approach is presented.

Release properties and morphological features of copper-based nanocoatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  1. Van Grieken R, Delalieux F, Gysels K (1998) Pure Appl Chem 70:2327–2331

    Article  Google Scholar 

  2. Albertano P (1995) Proceedings of 1st International Congress of Science and Technology for the Safeguard of Cultural Heritage in Mediterranean Basin, pp 1303–1308

  3. Caneva G, Gori E, Danin A (1992) Atmos Environ 2:255–259

    Google Scholar 

  4. Warscheid TH, Braams J (2000) Int Biodeterior Biodegradation 46:343–368

    Article  CAS  Google Scholar 

  5. Dornieden TH, Gorbushina AA, Krumbein WE (2000) Int Biodeterior Biodegradation 46:261–270

    Article  CAS  Google Scholar 

  6. Ortega-Calvo JJ, Arino X, Hernandez-Marine M, Saiz-Jimenez C (2000) Sci Total Environ 167:329–341

    Google Scholar 

  7. Papida S, Murphy W, May E (2000) Int Biodeterior Biodegradation 46:305–317

    Article  CAS  Google Scholar 

  8. Diakumaku E, Gorbushina AA, Krumbein WE, Panina L, Soukharjevski S (1995) Sci Total Environ 167:295–304

    Article  CAS  Google Scholar 

  9. Saiz-Jimenez C (1995) Sci Total Environ 167:273–286

    Article  CAS  Google Scholar 

  10. Nugari MP, Pietrini AM, Caneva G, Imperi F, Visca P (2009) Int Biodeterior Biodegradation 63:705–711

    Article  CAS  Google Scholar 

  11. Macedo MF, Miller AZ, Dionisio A, Saiz-Jimenez C (2009) Microbiology 155:3476–3490

    Article  CAS  Google Scholar 

  12. Gaylarde CC, Gaylarde PM (2005) Int Biodeterior Biodegradation 55:131–139

    Article  Google Scholar 

  13. Bellinzoni AM, Caneva G, Ricci S (2003) Int Biodeterior Biodegradation 51:203–210

    Article  Google Scholar 

  14. Caneva G, Gori E, Montefinale T (1995) Sci Total Environ 167:205–214

    Article  CAS  Google Scholar 

  15. Guillitte O, Dreesen R (1995) Sci Total Environ 167:365–374

    Article  CAS  Google Scholar 

  16. Tiano P (2002) Biodegradation of cultural heritage: decay mechanisms and control methods. http://www.arcchipcz/w09/w09_tiano.pdf

  17. Barberousse H, Lombardo RJ, Tell G, Coute A (2006) Biofouling 22:69–77

    Article  Google Scholar 

  18. Guillitte O (1995) Sci Total Environ 167:215–220

    Article  CAS  Google Scholar 

  19. Nugari MP, Pietrini AM (1997) Int Biodeterior Biodegradation 40:247–253

    Article  Google Scholar 

  20. Moreau C, Verges-Belmin V, Leroux L, Orial G, Fronteau G, Barbin V (2008) J Cult Herit 9:394–400

    Article  Google Scholar 

  21. Malagodi M, Nugari MP, Altieri A, Lonati G (2000) In: Fassina V (ed) Proceedings of the Ninth International Congress on Deterioration and Conservation of Stone, Elsevier, Amsterdam, The Netherlands, vol 2, pp 225–233

  22. Urzi C, De Leo F (2007) Int Biodeterior Biodegradation 60:25–34

    Article  CAS  Google Scholar 

  23. Leeming K, Moore CP, Denyer SP (2002) Int Biodeterior Biodegradation 49:39–43

    Article  CAS  Google Scholar 

  24. Quaresima R, Baccante A, Volpe R, Corain B (2000) In: Moropoulou A, Zezza F and Kollias E (eds) Proceedings of the 4th international Symposium on the Conservation of Monuments in the Mediterranean Basin, Rodi, Technical Chamber of Greece, vol 3, pp 323–335

  25. De Muynck W, Ramirez AM, De Belie N, Verstraete W (2009) Int Biodeterior Biodegradation 63:679–689

    Article  Google Scholar 

  26. Balzarotti-Kammlein R, Sansoni M, Castronovo A (1999) In: Proceedings of the International Conference on Microbiology and Conservation of Microbes and Art, Florence, pp 217–220

  27. Blazquez AB, Lorenzo J, Flores M, Gomez-Alarcon G (2000) Aerobiologia 16:423–428

    Article  Google Scholar 

  28. Cioffi N, Torsi L, Ditaranto N, Sabbatini L, Zambonin PG, Tantillo G, Ghibelli L, D’Alessio M, Bleve-Zacheo T, Traversa E (2004) Appl Phys Lett 85:2417–2419

    Article  CAS  Google Scholar 

  29. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Chem Mater 17:5255–5262

    Article  CAS  Google Scholar 

  30. Cioffi N, Ditaranto N, Torsi L, Picca RA, De Giglio E, Sabbatini L, Novello L, Tantillo G, Bleve-Zacheo T, Zambonin PG (2005) Anal Bioanal Chem 382:1912–1918

    Article  CAS  Google Scholar 

  31. Cioffi N, Ditaranto N, Sabbatini L, Torsi L, Zambonin PG (2009) European Patent Application number EP 2123797A1, 25 November

  32. Reetz MT, Helbig W (1994) J Am Chem Soc 116:7401–7402

    Article  CAS  Google Scholar 

  33. Andriani GF, Walsh N (2002) Eng Geol 67:5–15

    Article  Google Scholar 

  34. Cotecchia V, Radina B, Zezza F (1982) Marmi di Puglia. Istituto Geografico De Agostini, Novara

    Google Scholar 

  35. Raccomandazioni NorMal (1993) AA VV Raccomandazioni NorMal 43/93, Misure colorimetriche strumentali di superfici opache Roma. CNR-ICR

  36. Cu150 nanocomposite has the highest loading of copper nanoparticles, hence the highest content of stabilizing agent which is able to confer a hydrophobic character to the surface of the treated lithotypes

  37. Tiano P, Pardini C (2004) Arkos 5:30–36

    Google Scholar 

  38. Vandevoorde D, Pamplona M, Schalm O, Vanhellemont Y, Cnudde V, Verhaeven E (2009) J Cult Herit 10:41–51

    Article  Google Scholar 

  39. Tretiach M, Bertuzzi S, Salvadori O, (2008) In: Tiano P and Pardini C (eds) Proceedings of the International Workshop SMW08, Florence, Italy, pp 279–286

Download references


Prof. C. Pazzani is greatly acknowledged for preliminary biological tests and for useful discussions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nicoletta Ditaranto.

Electronic supplementary materials

Below is the link to the electronic supplementary material.


(PDF 512 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ditaranto, N., Loperfido, S., van der Werf, I. et al. Synthesis and analytical characterisation of copper-based nanocoatings for bioactive stone artworks treatment. Anal Bioanal Chem 399, 473–481 (2011).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: