Analytical and Bioanalytical Chemistry

, Volume 399, Issue 10, pp 3451–3458 | Cite as

DNA sensor by using electrochemiluminescence of acridinium ester initiated by tripropylamine

Original Paper

Abstract

It was found that tripropylamine (TPA) could be used as a coreactant to initiate the electrochemiluminescence (ECL) of acridinium NHS ester (AE NHS) labels attached to DNA. The radicals generated in the electro-oxidation process of TPA reacted with AE NHS to form the excited N-methylacridone, giving rise to light emission. The AE/TPA ECL system was for the first time used as the detection system for developing an ECL-based DNA sensor. In the protocol, streptavidin-modified gold nanoparticles were firstly immobilized onto a thiol-treated gold electrode. The streptavidin could specifically interact with the biontinylated capture DNA. Afterwards, the target DNA and the AE-labeled report DNA were conjugated onto the electrode step by step due to the hybridization reactions, and a sandwich-type sensor was fabricated. The ECL signals of the sensor were obtained under pulse potential condition in alkaline solution containing 50.0 mmol L−1 TPA. Under optimized experimental conditions, the linear range of the DNA sensor for the determination of the target DNA was from 5.0 × 10−15 to 5.0 × 10−12 mol L−1. The detection limit (S/N = 3) was 3.0 × 10−15 mol L−1. Moreover, the sensor could specifically recognize the target DNA against one base-pair mismatched sequences, two base-pair mismatched sequences, and the noncomplementary sequences. It is of great application potential in clinic analysis.

Keywords

Electrochemiluminescence DNA sensor Acridinium ester Gold nanoparticles 

Notes

Acknowledgment

This work was supported by the National Natural Science Foundation of P. R. China (grant nos. 20625517 and 20573101) and the Overseas Outstanding Young Scientist Program of the Chinese Academy of Sciences.

Supplementary material

216_2010_4157_MOESM1_ESM.pdf (462 kb)
ESM 1(PDF 461 kb)

References

  1. 1.
    Hiyama S, Inoue T, Shima T, Moritani Y, Suda T, Sutoh K (2008) Autonomous loading, transport, and unloading of specified cargoes by using DNA hybridization and biological motor-based motility. Small 4(4):410–415CrossRefGoogle Scholar
  2. 2.
    Colinas RJ, Bellisario R, Pass KA (2000) Multiplexed genotyping of β-Globin variants from PCR-amplified newborn blood spot DNA by hybridization with Allele-specific oligodeoxynucleotides coupled to an array of fluorescent microspheres. Clin Chem 46(7):996–998Google Scholar
  3. 3.
    Shen Y, Wu BL (2009) Microarray-based genomic DNA profiling technologies in clinical molecular diagnostics. Clin Chem 55(4):659–669CrossRefGoogle Scholar
  4. 4.
    Shen Y, Miller DT, Cheung SW, Lip V, Sheng X, Tomaszewicz K, Shao H, Fang H, Tang HS, Irons M (2007) Development of a focused oligonucleotide-array comparative genomic hybridization chip for clinical diagnosis of genomic imbalance. Clin Chem 53(12):2051–2059CrossRefGoogle Scholar
  5. 5.
    Harriff MJ, Wu M, Kent ML, Bermudez LE (2008) Species of environmental Mycobacteria differ in their abilities to grow in human, mouse, and carp macrophages and with regard to the presence of Mycobacterial virulence genes, as observed by DNA microarray hybridization. Appl Environ Microb 74(1):275–285CrossRefGoogle Scholar
  6. 6.
    Call DR, Borucki MK, Loge FJ (2003) Detection of bacterial pathogens in environmental samples using DNA microarrays. J Microbiol Meth 53(2):235–243CrossRefGoogle Scholar
  7. 7.
    Buckley B (2007) Comparative environmental genomics in non-model species: using heterologous hybridization to DNA-based microarrays. J Exp Biol 210(9):1602–1606CrossRefGoogle Scholar
  8. 8.
    Wang H, Ju H, Chen H (2002) Simultaneous determination of guanine and adenine in DNA using an electrochemically pretreated glassy carbon electrode. Anal Chim Acta 461(2):243–250CrossRefGoogle Scholar
  9. 9.
    Wang J (2000) From DNA biosensors to gene chips. Nucleic Acids Res 28(16):3011–3016CrossRefGoogle Scholar
  10. 10.
    Pan S, Rothberg L (2005) Chemical control of electrode functionalization for detection of DNA hybridization by electrochemical impedance spectroscopy. Langmuir 21(3):1022–1027CrossRefGoogle Scholar
  11. 11.
    Hahm J, Lieber CM (2004) Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett 4(1):51–54CrossRefGoogle Scholar
  12. 12.
    Dong X, Shi Y, Huang W, Chen P, Li LJ (2010) Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv Mater 22(14):1649–1653CrossRefGoogle Scholar
  13. 13.
    Caruso F, Rodda E, Furlong DN, Niikura K, Okahata Y (1997) Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development. Anal Chem 69(11):2043–2049CrossRefGoogle Scholar
  14. 14.
    Lin L, Zhao H, Li J, Tang J, Duan M, Jiang L (2000) Study on colloidal Au-enhanced DNA sensing by quartz crystal microbalance. Biochem Bioph Res Co 274(3):817–820CrossRefGoogle Scholar
  15. 15.
    Ananthanawat C, Vilaivan T, Hoven VP, Su X (2010) Comparison of DNA, aminoethylglycyl PNA and pyrrolidinyl PNA as probes for detection of DNA hybridization using surface plasmon resonance technique. Biosens Bioelectron 25(5):1064–1069CrossRefGoogle Scholar
  16. 16.
    Jin W, Lin X, Lv S, Zhang Y, Jin Q, Mu Y (2009) A DNA sensor based on surface plasmon resonance for apoptosis-associated genes detection. Biosens Bioelectron 24(5):1266–1269CrossRefGoogle Scholar
  17. 17.
    Sendroiu IE, Warner ME, Corn RM (2009) Fabrication of silica-coated gold nanorods functionalized with DNA for enhanced surface plasmon resonance imaging biosensing applications. Langmuir 25(19):11282–11284CrossRefGoogle Scholar
  18. 18.
    Feng CL, Zhong XH, Steinhart M, Caminade AM, Majoral JP, Knoll W (2007) Graded-bandgap quantum-dot-modified nanotubes: a sensitive biosensor for enhanced detection of DNA hybridization. Adv Mater 19(15):1933–1936CrossRefGoogle Scholar
  19. 19.
    Jeon S, Turner J, Granick S (2003) Noncontact temperature measurement in microliter-sized volumes using fluorescent-labeled DNA oligomers. J Am Chem Soc 125(33):9908–9909CrossRefGoogle Scholar
  20. 20.
    Romaschin AD, Walker PM (2000) Endotoxin activity in whole blood by neutrophil chemiluminescence—a novel analytical paradigm. Clin Chem 46(9):1504–1506Google Scholar
  21. 21.
    Wang Z, Hu J, Jin Y, Yao X, Li J (2006) In situ amplified chemiluminescent detection of DNA and immunoassay of IgG using special-shaped gold nanoparticles as label. Clin Chem 52(10):1958–1961CrossRefGoogle Scholar
  22. 22.
    Niazov T, Pavlov V, Xiao Y, Gill R, Willner I (2004) DNAzyme-functionalized Au nanoparticles for the amplified detection of DNA of telomerase activity. Nano Lett 4(9):1683–1687CrossRefGoogle Scholar
  23. 23.
    Miao W, Bard AJ (2003) Electrogenerated chemiluminescence. 72. Determination of immobilized DNA and C-reactive protein on Au (111) electrodes using tris (2,2-bipyridyl) ruthenium (II) labels. Anal Chem 75(21):5825–5834CrossRefGoogle Scholar
  24. 24.
    Lee J, Yun K, Lim G, Lee S, Kim S, Park J (2007) DNA biosensor based on the electrochemiluminescence of Ru (bpy)32+ with DNA-binding intercalators. Bioelectrochemistry 70(2):228–234CrossRefGoogle Scholar
  25. 25.
    Wei H, Du Y, Kang J, Wang E (2007) Label free electrochemiluminescence protocol for sensitive DNA detection with a tris (2,2′-bipyridyl) ruthenium (II) modified electrode based on nucleic acid oxidation. Electrochem Commun 9(7):1474–1479CrossRefGoogle Scholar
  26. 26.
    Dennany L, Forster RJ, Rusling JF (2003) Simultaneous direct electrochemiluminescence and catalytic voltammetry detection of DNA in ultrathin films. J Am Chem Soc 125(17):5213–5218CrossRefGoogle Scholar
  27. 27.
    Cao W, Ferrance JP, Demas J, Landers JP (2006) Quenching of the electrochemiluminescence of tris (2,2-bipyridine) ruthenium (II) by ferrocene and its potential application to quantitative DNA detection. J Am Chem Soc 128(23):7572–7578CrossRefGoogle Scholar
  28. 28.
    Lin Z, Sun J, Chen J, Guo L, Chen Y, Chen G (2008) Electrochemiluminescent biosensor for hypoxanthine based on the electrically heated carbon paste electrode modified with xanthine oxidase. Anal Chem 80(8):2826–2831CrossRefGoogle Scholar
  29. 29.
    Huang H, Zhu JJ (2009) DNA aptamer-based QDs electrochemiluminescence biosensor for the detection of thrombin. Biosens Bioelectron 25(4):927–930CrossRefGoogle Scholar
  30. 30.
    Weizman Y, Patolsky F, Katz E, Willner I (2003) Amplified DNA sensing and immunosensing by the rotation of functional magnetic particles. J Am Chem Soc 125:3452–3454CrossRefGoogle Scholar
  31. 31.
    Bae S, Oh J, Shin I, Cho M, Kim Y, Kim H, Hong J (2010) Highly sensitive detection of DNA by electrogenerated chemiluminescence amplification using dendritic Ru (bpy) 32+ doped silica nanoparticles. Analyst 135:603–607CrossRefGoogle Scholar
  32. 32.
    Leland J, Powell M (1990) Electrogenerated chemiluminescence: an oxidative reduction type ECL reaction sequence using tripropyl amine. J Electrochem Soc 137:3127–3131CrossRefGoogle Scholar
  33. 33.
    Bard A, Debad J, Leland J, Sigal G, Wilbur J, Wohlstadter J (2000) Chemiluminescence, electrogenerated. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation 2:9842–9849Google Scholar
  34. 34.
    Miao W, Choi J, Bard A (2002) Electrogenerated chemiluminescence 69: the tris (2,2′-bipyridine) ruthenium (II),(Ru (bpy) 32+)/tri-n-propylamine (TPrA) system revisited—a new route involving TPrA•+ cation radicals. J Am Chem Soc 124(48):14478–14485CrossRefGoogle Scholar
  35. 35.
    Arnold LJ Jr, Hammond PW, Wiese WA, Nelson NC (1989) Assay formats involving acridinium-ester-labeled DNA probes. Clin Chem 35(8):1588–1594Google Scholar
  36. 36.
    Piran U, Kohn DW, Uretsky LS, Bernier D, Barlow EH, Niswander CA, Stastny M (1987) Immunochemiluminometric assay of creatine kinase MB with a monoclonal antibody to the MB isoenzyme. Clin Chem 33(9):1517–1520Google Scholar
  37. 37.
    Weeks I, Beheshti I, McCapra F, Campbell AK, Woodhead JS (1983) Acridinium esters as high-specific-activity labels in immunoassay. Clin Chem 29(8):1474–1479Google Scholar
  38. 38.
    Goto M, Oka S, Okuzumi K, Kimura S, Shimada K (1991) Evaluation of acridinium-ester-labeled DNA probes for identification of Mycobacterium tuberculosis and Mycobacterium avium–Mycobacterium intracellular complex in culture. J Clin Microbiol 29(11):2473–2476Google Scholar
  39. 39.
    Dodeigne C, Thunus L, Lejeune R (2000) Chemiluminescence as diagnostic tool. A review. Talanta 51(3):415–439CrossRefGoogle Scholar
  40. 40.
    Mills A, Thomas M (1997) Fluorescence-based thin plastic film ion-pair sensors for oxygen. Analyst 122(1):63–68CrossRefGoogle Scholar
  41. 41.
    Ou C, McDonough S, Cabanas D, Ryder T, Harper M, Moore J, Schochetman G (1990) Rapid and quantitative detection of enzymatically amplified HIV-1 DNA using chemiluminescent oligonucleotide probes. AIDS Res Hum Retrov 6(11):1323–1329Google Scholar
  42. 42.
    Kolbert C, Connolly J, Lee M, Persing D (1995) Detection of the Staphylococcal mecA gene by chemiluminescent DNA hybridization. J Clin Microbiol 33(8):2179–2182Google Scholar
  43. 43.
    Septak M (2005) Acridinium ester-labelled DNA oligonucleotide probes. J Biolumin Chemilumin 4(1):351–356CrossRefGoogle Scholar
  44. 44.
    Zhang H, Cui H, Wang W, Shi MJ, Guo JZ (2008) Electrochemiluminescence of lucigenin/tributylamine system in ethanol solution. J Photoch Photobio A 197(1):55–61CrossRefGoogle Scholar
  45. 45.
    King D, Cooper W, Rusak S, Peake B, Kiddle J, O’Sullivan D, Melamed M, Morgan C, Theberge S (2007) Flow injection analysis of H2O2 in natural waters using acridinium ester chemiluminescence: method development and optimization using a kinetic model. Anal Chem 79(11):4169–4176CrossRefGoogle Scholar
  46. 46.
    Zhang H, Cui H (2009) Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids. Langmuir 25:2604–2612CrossRefGoogle Scholar
  47. 47.
    Zhang R, Hirakawa K, Seto D, Soh N, Nakano K, Masadome T, Nagata K, Sakamoto K, Imato T (2005) Sequential injection chemiluminescence immunoassay for anionic surfactants using magnetic microbeads immobilized with an antibody. Talanta 68(2):231–238CrossRefGoogle Scholar
  48. 48.
    Cui H, Zou G, Lin X (2003) Electrochemiluminescence of luminol in alkaline solution at a paraffin-impregnated graphite electrode. Anal Chem 75(2):324–331CrossRefGoogle Scholar
  49. 49.
    Wu K, Fei J, Bai W, Hu S (2003) Direct electrochemistry of DNA, guanine and adenine at a nanostructured film-modified electrode. Anal Bioanal Chem 376(2):205–209Google Scholar
  50. 50.
    Wilson R, Akhavan-Tafti H, DeSilva R, Schaap A (2001) Electrochemiluminescence determination of 2,6-difluorophenyl 10-methylacridan-9-carboxylate. Anal Chem 73(4):763–767CrossRefGoogle Scholar
  51. 51.
    Yang M, Liu C, Hu X, He P, Fang Y (2002) Electrochemiluminescence assay for the detection of acridinium esters. Anal Chim Acta 461(1):141–146CrossRefGoogle Scholar
  52. 52.
    Tian DY, Duan CF, Wang W, Li N, Zhang H, Cui H, Lu YY (2009) Sandwich-type electrochemiluminescence immunosensor based on N-(aminobutyl)-N-ethylisoluminol labeling and gold nanoparticle amplification. Talanta 78(2):399–404CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.CAS Key Laboratory of Soft Matter Chemistry, Department of ChemistryUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations