Analytical and Bioanalytical Chemistry

, Volume 398, Issue 5, pp 2099–2107 | Cite as

Arsenic-induced protein phosphorylation changes in HeLa cells

Original Paper

Abstract

Arsenic is well documented as a chemotherapeutic agent capable of inducing cell death while at the same time is considered a human carcinogen and an environmental contaminant. Although arsenic toxicity is well known and has formed an impressive literature over the time, little is known about how its effects are exerted at the proteome level. Protein phosphorylation is an important post-translational modification involved in the regulation of cell signaling and likely is altered by arsenic treatment. Despite the importance of phosphorylation for many regulatory processes in cells, the identification and characterization of phosphorylation, as effected by arsenic through mass spectrometric detection, are not fully studied. Here, we identify phosphorylated proteins, which are related to post-translational modifications after phenylarsine oxide (PAO) inoculation to HeLa cells. PAO was chosen because of its high cytotoxicity, measured earlier in these labs. In this study, size exclusion chromatography coupled to inductively coupled plasma mass spectrometry (SEC-ICP-MS) is used to establish several molecular weight fractions with phosphorylated proteins by monitoring 31P signal vs. time via ICP-MS. SEC-ICP-MS fractions are collected and then separated by the nano-LC-CHIP/ITMS system for peptide determination. Spectrum Mill and MASCOT protein database search engines are used for protein identification. Several phosphorylation sites and proteins related to post-translational modifications are also identified.

Keywords

Bioanalytical methods Cell systems/single-cell analysis Mass spectrometry/ICP-MS Speciation HPLC Genomics/proteomics 

References

  1. 1.
    Hirano S, Cui X, Li S, Kanno S, Kobayashi Y, Hayakawa T, Shraim A (2003) Arch Toxicol 77:305–312Google Scholar
  2. 2.
    Leermakers M, Baeyens W, De Gieter M, Smedts B, Meert C, De Bisschop HC, Morabito R, Quevauviller P (2006) TrAC, Trends Anal Chem 25:1–10CrossRefGoogle Scholar
  3. 3.
    Tornes JA, Opstad AM, Johnsen BA (2006) Sci Total Environ 356:235–246CrossRefGoogle Scholar
  4. 4.
    Stock T (1996) Sea-dumped chemical weapons and the chemical weapons convention. In: Kafka AV (ed) Sea-dumped chemical weapons: aspects, problems and solutions. Kluwer Academic, DordrechtGoogle Scholar
  5. 5.
    Kroening KK, Solivio MJV, Garcia-Lopez G, Puga A, Caruso JA (2008) Metallomics 1:59–66CrossRefGoogle Scholar
  6. 6.
    Pitten FA, Muller G, Konig P, Schmidt D, Thurow K, Kramer A (1999) Sci Total Environ 226:237–245CrossRefGoogle Scholar
  7. 7.
    Charoensuk V, Gati WP, Weinfeld M, Le XC (2009) Toxicol Appl Pharmacol 239:64–70CrossRefGoogle Scholar
  8. 8.
    Hirano S, Kobayashi Y, Hayakawa T, Cui X, Yamamoto M, Kanno S, Shraim A (2005) Arch Toxicol 79:54–61CrossRefGoogle Scholar
  9. 9.
    Sahara N, Takeshita A, Kobayashi M, Shigeno K, Nakamura S, Shinjo K, Naito K, Maekawa M, Horii T, Ohnishi K, Kitamura K, Naoe T, Hayashi H, Ohno R (2004) Leuk Lymphoma 45:987–995CrossRefGoogle Scholar
  10. 10.
    Cline DJ, Thorpe C, Schneider JP (2003) J Am Chem Soc 125:2923–2929CrossRefGoogle Scholar
  11. 11.
    Wang Z, Zhang H, Li XF, Le XC (2007) Rapid Commun Mass Spectrom 21:3658–3666CrossRefGoogle Scholar
  12. 12.
    Kitchin KT, Wallace K (2005) Toxicol Appl Pharmacol 206:66–72CrossRefGoogle Scholar
  13. 13.
    Guo Y, Ling Y, Thomson BA, Siu KWM (2005) J Am Soc Mass Spectrom 16:1787–1794CrossRefGoogle Scholar
  14. 14.
    Ngu TT, Stillman MJ (2006) J Am Chem Soc 128:12473–12483CrossRefGoogle Scholar
  15. 15.
    Pinkse MWH, Uitto PM, Hilhorst MJ, Ooms B, Heck AJR (2004) Anal Chem 76:3935–3943CrossRefGoogle Scholar
  16. 16.
    Wolschin F, Wienkoop S, Weckwerth W (2005) Proteomics 5:4389–4397CrossRefGoogle Scholar
  17. 17.
    Loyet KM, Stults JT, Arnott D (2005) Mol Cell Proteomics 4:235–245CrossRefGoogle Scholar
  18. 18.
    Schlosser A, Vanselow JT, Kramer A (2005) Anal Chem 77:5243–5250CrossRefGoogle Scholar
  19. 19.
    Chalmers MJ, Kolch W, Emmett MR, Marshall AG, Mischak H (2004) J Chromatogr B Anal Technol Biomed Life Sci 803:111–120CrossRefGoogle Scholar
  20. 20.
    Zeller M, Konig S (2004) Anal Bioanal Chem 378:898–909CrossRefGoogle Scholar
  21. 21.
    Wind M, Edler M, Jakubowski N, Linscheid M, Wesch H, Lehmann WD (2001) Anal Chem 73:29–35CrossRefGoogle Scholar
  22. 22.
    Marshall P, Heudi O, Bains S, Freeman HN, Abou-Shakra F, Reardon K (2002) Analyst 127:459–461CrossRefGoogle Scholar
  23. 23.
    Wind M, Feldmann I, Jakubowski N, Lehmann WD (2003) Electrophoresis 24:1276–1280CrossRefGoogle Scholar
  24. 24.
    Wind M, Wesch H, Lehmann WD (2001) Anal Chem 73:3006–3010CrossRefGoogle Scholar
  25. 25.
    Wind M, Gosenca D, Kubler D, Lehmann WD (2003) Anal Biochem 317:26–33CrossRefGoogle Scholar
  26. 26.
    Wind M, Kelm O, Nigg EA, Lehmann WD (2002) Proteomics 2:1516–1523CrossRefGoogle Scholar
  27. 27.
    Abdullaev FI, Rivera-Luna R, García-Carrancá A, Ayala-Fierro F, Espinosa-Aguirre JJ (2001) Mutat Res Genet Toxicol Environ Mutagen 493:31–38CrossRefGoogle Scholar
  28. 28.
    Chen XW, Zou AM, Chen ML, Wang JH, Dasgupta PK (2009) Anal Chem 81:1291–1296CrossRefGoogle Scholar
  29. 29.
    Gerlach VL, Feaver WJ, Fischhaber PL, Friedberg EC (2001) J Biol Chem 276:92–98CrossRefGoogle Scholar
  30. 30.
    Briggs SD, Bryant SS, Jove R, Sanderson SD, Smithgall TE (1995) J Biol Chem 270:14718–14724CrossRefGoogle Scholar
  31. 31.
    Tourrière H, Chebli K, Zekri L, Courselaud B, Blanchard JM, Bertrand E, Tazi J (2003) J Cell Biol 160:823–831CrossRefGoogle Scholar
  32. 32.
    Moon SY, Zheng Y (2003) Trends Cell Biol 13:13–22CrossRefGoogle Scholar
  33. 33.
    Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, Cohn MA, Cantley LC, Gygi SP (2004) Proc Natl Acad Sci U S A 101:12130–12135CrossRefGoogle Scholar
  34. 34.
    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Cell 127:635–648CrossRefGoogle Scholar
  35. 35.
    Shen X, Valencia CA, Szostak J, Dong B, Liu R (2005) Proc Natl Acad Sci U S A 102:5969–5974CrossRefGoogle Scholar
  36. 36.
    Cosen-Binker LI, Kapus A (2006) Physiology 21:352–361CrossRefGoogle Scholar
  37. 37.
    Liu H, Sugiura M, Nava VE, Edsall LC, Kono K, Poulton S, Milstien S, Kohama T, Spiegel S (2000) J Biol Chem 275:19513–19520CrossRefGoogle Scholar
  38. 38.
    Conus NM, Hannan KM, Cristiano BE, Hemmings BA, Pearson RB (2002) J Biol Chem 277:38021–38028CrossRefGoogle Scholar
  39. 39.
    Ostergaard E (2008) J Inherit Metab Dis 31:226–229CrossRefGoogle Scholar
  40. 40.
    Cvetkovic A, Angeli Lal Menon A, Thorgersen M, Scott J, Poole F II, Jenney F Jr, Lancaster W, Praissman J, Shanmukh S, Vaccaro B, Trauger S, Kalisiak E, Apon J, Siuzdak G, Yannone S, Tainer J, Adams M (2010) Nature. doi:10.1038/nature09265 Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Orkun Alp
    • 1
    • 2
  • Edward J. Merino
    • 3
  • Joseph A. Caruso
    • 2
    • 3
  1. 1.Analytical Chemistry Department, Faculty of PharmacyGazi UniversityAnkaraTurkey
  2. 2.University of Cincinnati/Agilent Technologies Metallomics Center of the Americas, Department of ChemistryUniversity of CincinnatiCincinnatiUSA
  3. 3.Department of ChemistryUniversity of CincinnatiCincinnatiUSA

Personalised recommendations