Skip to main content

Advertisement

Log in

Toxicity assessment of nanomaterials: methods and challenges

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The increasing use of nanomaterials in consumer and industrial products has aroused global concern regarding their fate in biological systems, resulting in a demand for parallel risk assessment. A number of studies on the effects of nanoparticles in in vitro and in vivo systems have been published. However, there is still a need for further studies that conclusively establish their safety/toxicity, due to the many experimental challenges and issues encountered when assessing the toxicity of nanomaterials. Most of the methods used for toxicity assessment were designed and standardized with chemical toxicology in mind. However, nanoparticles display several unique physicochemical properties that can interfere with or pose challenges to classical toxicity assays. Recently, some new methods and modified versions of pre-existing methods have been developed for assessing the toxicity of nanomaterials. This review is an attempt to highlight some important methods employed in nanomaterial toxicology and to provide a critical analysis of the major issues/challenges faced in this emerging field.

Nanospecific properties leading to interference with some commonly used in vitro assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Buffle J (2006) The key role of environmental colloids/nanoparticles for the sustainability of life. Environ Chem 3(3):155–158

    Article  CAS  Google Scholar 

  2. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22

    Article  CAS  Google Scholar 

  3. Theng BKG, Yuan G (2008) Nanoparticles in the soil environment. Elements 4(6):395–399

    Article  CAS  Google Scholar 

  4. Xia L, Lenaghan SC, Zhang M, Zhang Z, Li Q (2010) Naturally occurring nanoparticles from English ivy: an alternative to metal-based nanoparticles for UV protection. J Nanobiotechnol 8(1):12

    Article  CAS  Google Scholar 

  5. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  Google Scholar 

  6. Kahru A, Savolainen K (2010) Potential hazard of nanoparticles: from properties to biological and environmental effects. Toxicology 269(2–3):89–91

    Article  CAS  Google Scholar 

  7. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Article  CAS  Google Scholar 

  8. Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92(1):5–22

    Article  CAS  Google Scholar 

  9. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49

    Article  CAS  Google Scholar 

  10. Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150(5):552–558

    Article  CAS  Google Scholar 

  11. Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A (2009) DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185(3):211–218

    Article  CAS  Google Scholar 

  12. Yang X, Liu J, He H, Zhou L, Gong C, Wang X, Yang L, Yuan J, Huang H, He L, Zhang B, Zhuang Z (2010) SiO2 nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells. Part Fibre Toxicol 7(1):1

    Google Scholar 

  13. Dhawan A, Taurozzi JS, Pandey AK, Shan W, Miller SM, Hashsham SA, Tarabara VV (2006) Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity. Environ Sci Technol 40(23):7394–7401

    Article  CAS  Google Scholar 

  14. Singh S, D'Britto V, Prabhune AA, Ramana CV, Dhawan A, Prasad BLV (2010) Cytotoxic and genotoxic assessment of glycolipid-reduced and -capped gold and silver nanoparticles. New J Chem 34(2):294–301

    Article  CAS  Google Scholar 

  15. Samberg ME, Oldenburg SJ, Monteiro-Riviere NA (2010) Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect 118:407–413

    Google Scholar 

  16. Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69(22):8784–8789

    Article  CAS  Google Scholar 

  17. Xie G, Sun J, Zhong G, Shi L, Zhang D (2009) Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch Toxicol 84:183–190

    Article  CAS  Google Scholar 

  18. Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, Olmedo I, Clos A, Sadagopa Ramanujam VM, Urayama A, Vergara L, Kogan MJ, Soto C (2010) Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Commun 393(4):649–655

    Article  CAS  Google Scholar 

  19. Baer DR, Gaspar DJ, Nachimuthu P, Techane SD, Castner DG (2010) Application of surface chemical analysis tools for characterization of nanoparticles. Anal Bioanal Chem 396(3):983–1002

    Article  CAS  Google Scholar 

  20. Doak SH, Griffiths SM, Manshian B, Singh N, Williams PM, Brown AP, Jenkins GJ (2009) Confounding experimental considerations in nanogenotoxicology. Mutagenesis 24(4):285–293

    Article  CAS  Google Scholar 

  21. Fischer HC, Chan WC (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18(6):565–571

    Article  CAS  Google Scholar 

  22. Howard AG (2009) On the challenge of quantifying man-made nanoparticles in the aquatic environment. J Environ Monit 12(1):135–142

    Article  CAS  Google Scholar 

  23. Stone V, Johnston H, Schins RP (2009) Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol 39(7):613–626

    Article  CAS  Google Scholar 

  24. Berhanu D, Dybowska A, Misra SK, Stanley CJ, Ruenraroengsak P, Boccaccini AR, Tetley TD, Luoma SN, Plant JA, Valsami-Jones E (2009) Characterisation of carbon nanotubes in the context of toxicity studies. Environ Health 8(Suppl 1):S3

    Article  CAS  Google Scholar 

  25. Sayes CM, Warheit DB (2009) Characterization of nanomaterials for toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(6):660–670

    Article  CAS  Google Scholar 

  26. Warheit DB (2008) How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 101(2):183–185

    Article  CAS  Google Scholar 

  27. Powers K, Palazuelos M, Moudgil B, Roberts S (2007) Characterization of the size, shape and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1(1):42–51

    Article  CAS  Google Scholar 

  28. Sayes CM, Reed KL, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97(1):163–180

    Article  CAS  Google Scholar 

  29. Weibel A, Bouchet R, Boulc'h F, Knauth P (2005) The big problem of small particles: a comparison of methods for determination of particle size in nanocrystalline anatase powders. Chem Mater 17(9):2378–2385

    Article  CAS  Google Scholar 

  30. Gupta S, Brouwer P, Bandyopadhyay S, Patil S, Briggs R, Jain J, Seal S (2005) TEM/AFM investigation of size and surface properties of nanocrystalline ceria. J Nanosci Nanotechnol 5(7):1101–1107

    Article  CAS  Google Scholar 

  31. Scalf J, West P (2006) Part I: introduction to nanoparticle characterization with AFM. Pacific Nanotechnology, Santa Clara (see www.nanoparticles.org/pdf/Scalf-West.pdf)

  32. Hradil J, Pisarev A, Babic M, Horak D (2007) Dextran-modified iron oxide nanoparticles. China Particuology 5(1–2):162–168

    Article  CAS  Google Scholar 

  33. Dhawan A, Sharma V, Parmar D (2009) Nanomaterials: a challenge for toxicologists. Nanotoxicology 3(1):1–9

    Article  CAS  Google Scholar 

  34. Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101(2):239–253

    Article  CAS  Google Scholar 

  35. Montes-Burgos I, Walczyk D, Hole P, Smith J, Lynch I, Dawson KA (2010) Characterisation of nanoparticle size and state prior to nanotoxicological studies. J Nanopart Res 12:47–53

    Article  Google Scholar 

  36. Motskin M, Wright DM, Muller K, Kyle N, Gard TG, Porter AE, Skepper JN (2009) Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and biostability. Biomaterials 30(19):3307–3317

    Article  CAS  Google Scholar 

  37. Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134

    Article  CAS  Google Scholar 

  38. Zhang LW, Yang J, Barron AR, Monteiro-Riviere NA (2009) Endocytic mechanisms and toxicity of a functionalized fullerene in human cells. Toxicol Lett 191(2–3):149–157

    Article  CAS  Google Scholar 

  39. Song MM, Song WJ, Bi H, Wang J, Wu WL, Sun J, Yu M (2010) Cytotoxicity and cellular uptake of iron nanowires. Biomaterials 31(7):1509–1517

    Article  CAS  Google Scholar 

  40. Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, Lopez-Quintela MA (2007) Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol 127(7):1701–1712

    CAS  Google Scholar 

  41. Pelka J, Gehrke H, Esselen M, Turk M, Crone M, Brase S, Muller T, Blank H, Send W, Zibat V, Brenner P, Schneider R, Gerthsen D, Marko D (2009) Cellular uptake of platinum nanoparticles in human colon carcinoma cells and their impact on cellular redox systems and DNA integrity. Chem Res Toxicol 22(4):649–659

    Article  CAS  Google Scholar 

  42. Bastian S, Busch W, Kuhnel D, Springer A, Meissner T, Holke R, Scholz S, Iwe M, Pompe W, Gelinsky M, Potthoff A, Richter V, Ikonomidou C, Schirmer K (2009) Toxicity of tungsten carbide and cobalt-doped tungsten carbide nanoparticles in mammalian cells in vitro. Environ Health Perspect 117(4):530–536

    CAS  Google Scholar 

  43. Kuhnel D, Busch W, Meissner T, Springer A, Potthoff A, Richter V, Gelinsky M, Scholz S, Schirmer K (2009) Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line. Aquat Toxicol 93(2–3):91–99

    Article  CAS  Google Scholar 

  44. Marquis BJ, Love SA, Braun KL, Haynes CL (2009) Analytical methods to assess nanoparticle toxicity. Analyst 134(3):425–439

    Article  CAS  Google Scholar 

  45. Porter AE, Gass M, Muller K, Skepper JN, Midgley P, Welland M (2007) Visualizing the uptake of C60 to the cytoplasm and nucleus of human monocyte-derived macrophage cells using energy-filtered transmission electron microscopy and electron tomography. Environ Sci Technol 41(8):3012–3017

    Article  CAS  Google Scholar 

  46. Thomas PJ, Midgley PA (2002) An introduction to energy-filtered transmission electron microscopy. Top Catal 21(4):109–138

    Article  CAS  Google Scholar 

  47. Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, Yuan F, Xi T (2009) Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 9(8):4924–4932

    Article  CAS  Google Scholar 

  48. Allabashi R, Stach W, de la Escosura-Muniz A, Liste-Calleja L, Merkoci A (2009) ICP-MS: a powerful technique for quantitative determination of gold nanoparticles without previous dissolving. J Nanopart Res 11(8):2003–2011

    Article  CAS  Google Scholar 

  49. Missirlis D, Hubbell JA (2009) In vitro uptake of amphiphilic, hydrogel nanoparticles by J774A.1 cells. J Biomed Mater Res A. doi:10.1002/jbm.a.32648

    Google Scholar 

  50. Suzuki H, Toyooka T, Ibuki Y (2007) Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis. Environ Sci Technol 41(8):3018–3024

    Article  CAS  Google Scholar 

  51. Wang Y, Wu W (2006) In situ evading of phagocytic uptake of stealth solid lipid nanoparticles by mouse peritoneal macrophages. Drug Deliv 13(3):189–192

    Article  CAS  Google Scholar 

  52. Xu A, Chai Y, Nohmi T, Hei TK (2009) Genotoxic responses to titanium dioxide nanoparticles and fullerene in gpt delta transgenic MEF cells. Part Fibre Toxicol 6:3

    Article  CAS  Google Scholar 

  53. Kroll A, Pillukat MH, Hahn D, Schnekenburger J (2009) Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biopharm 72(2):370–377

    Article  CAS  Google Scholar 

  54. Monteiro-Riviere NA, Inman AO (2006) Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 44(6):1070–1078

    Article  CAS  Google Scholar 

  55. Monteiro-Riviere NA, Inman AO, Zhang LW (2009) Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 234(2):222–235

    Article  CAS  Google Scholar 

  56. Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168(1):58–74

    Article  CAS  Google Scholar 

  57. Worle-Knirsch JM, Pulskamp K, Krug HF (2006) Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 6(6):1261–1268

    Article  CAS  Google Scholar 

  58. Shukla S, Priscilla A, Banerjee M, Bhonde RR, Ghatak J, Satyam PV, Sastry M (2005) Porous gold nanospheres by controlled transmetalation reaction: a novel material for application in cell imaging. Chem Mater 17(20):5000–5005

    Article  CAS  Google Scholar 

  59. Aam BB, Fonnum F (2007) Carbon black particles increase reactive oxygen species formation in rat alveolar macrophages in vitro. Arch Toxicol 81(6):441–446

    Article  CAS  Google Scholar 

  60. Davis RR, Lockwood PE, Hobbs DT, Messer RL, Price RJ, Lewis JB, Wataha JC (2007) In vitro biological effects of sodium titanate materials. J Biomed Mater Res B Appl Biomater 83(2):505–511

    CAS  Google Scholar 

  61. Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1(5):2315–2319

    Article  CAS  Google Scholar 

  62. Borm P, Klaessig F, Landry T, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S (2006) Research strategies for safety evaluation of nanomaterials. Part V: Role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90(1):23–32

    Article  CAS  Google Scholar 

  63. Teeguarden J, Hinderliter P, Orr G, Thrall B, Pounds J (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticles toxicity assessments. Toxicol Sci 95(2):300–312

    Article  CAS  Google Scholar 

  64. Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168(2):121–131

    Article  CAS  Google Scholar 

  65. Sager T, Porter D, Robinson V, Lindsley W, Schwegler-Berry D, Castranova V (2008) Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology 1(2):118–129

    Article  CAS  Google Scholar 

  66. Balbus JM, Maynard AD, Colvin VL, Castranova V, Daston GP, Denison RA, Dreher KL, Goering PL, Goldberg AM, Kulinowski KM, Monteiro-Riviere NA, Oberdorster G, Omenn GS, Pinkerton KE, Ramos KS, Rest KM, Sass JB, Silbergeld EK, Wong BA (2007) Meeting report: hazard assessment for nanoparticles–report from an interdisciplinary workshop. Environ Health Perspect 115(11):1654–1659

    Article  Google Scholar 

  67. Farah AA, Alvarez-Puebla RA, Fenniri H (2008) Chemically stable silver nanoparticle-crosslinked polymer microspheres. J Colloid Interface Sci 319(2):572–576

    Article  CAS  Google Scholar 

  68. Skebo JE, Grabinski CM, Schrand AM, Schlager JJ, Hussain SM (2007) Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system. Int J Toxicol 26(2):135–141

    Article  CAS  Google Scholar 

  69. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18

    Article  CAS  Google Scholar 

  70. Warheit DB, Brock WJ, Lee KP, Webb TR, Reed KL (2005) Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: impact of surface treatments on particle toxicity. Toxicol Sci 88(2):514–524

    Google Scholar 

  71. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165–172

    Article  Google Scholar 

  72. Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4(11):2163–2169

    Article  CAS  Google Scholar 

  73. Warheit DB, Sayes CM, Reed KL (2009) Nanoscale and fine zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures? Environ Sci Technol 43(20):7939–7945

    Article  CAS  Google Scholar 

  74. Sayes C, Kenneth L, Subramoney S, Abrams L, Warheit DB (2009) Can in vitro assays substitute for in vivo studies in assessing the pulmonary hazards of fine and nanoscale materials? J Nanopart Res 11:421–431

    Article  CAS  Google Scholar 

  75. Buford MC, Hamilton RF Jr, Holian A (2007) A comparison of dispersing media for various engineered carbon nanoparticles. Part Fibre Toxicol 4:6

    Article  Google Scholar 

  76. Porter D, Sriram K, Wolfarth M, Jefferson A, Schwegler-Berry D, Andrew M, Castranova V (2008) A biocompatible medium for nanoparticle dispersion. Nanotoxicology 2(3):144–154

    Article  CAS  Google Scholar 

  77. Bihari P, Vippola M, Schultes S, Praetner M, Khandoga AG, Reichel CA, Coester C, Tuomi T, Rehberg M, Krombach F (2008) Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part Fibre Toxicol 5:14

    Article  CAS  Google Scholar 

  78. Lynch I, Dawson KA (2008) Protein–nanoparticle interactions. Nano Today 3(1–2):40–47

    Google Scholar 

  79. Thomas T, Thomas K, Sadrieh N, Savage N, Adair P, Bronaugh R (2006) Research strategies for safety evaluation of nanomaterials, part VII: evaluating consumer exposure to nanoscale materials. Toxicol Sci 91(1):14–19

    Article  CAS  Google Scholar 

  80. Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C, ten Voorde SE, Wijnhoven SW, Marvin HJ, Sips AJ (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53(1):52–62

    Article  CAS  Google Scholar 

  81. Cheng C, Muller KH, Koziol KK, Skepper JN, Midgley PA, Welland ME, Porter AE (2009) Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials 30(25):4152–4160

    Article  CAS  Google Scholar 

  82. Cveticanin J, Joksic G, Leskovac A, Petrovic S, Sobot AV, Neskovic O (2010) Using carbon nanotubes to induce micronuclei and double strand breaks of the DNA in human cells. Nanotechnology 21(1):015102

    Article  CAS  Google Scholar 

  83. Patlolla A, Patlolla B, Tchounwou P (2010) Evaluation of cell viability, DNA damage, and cell death in normal human dermal fibroblast cells induced by functionalized multiwalled carbon nanotube. Mol Cell Biochem 338(1–2):225–232

    Article  CAS  Google Scholar 

  84. Ravichandran P, Periyakaruppan A, Sadanandan B, Ramesh V, Hall JC, Jejelowo O, Ramesh GT (2009) Induction of apoptosis in rat lung epithelial cells by multiwalled carbon nanotubes. J Biochem Mol Toxicol 23(5):333–344

    Article  CAS  Google Scholar 

  85. Reddy AR, Reddy YN, Krishna DR, Himabindu V (2010) Multi wall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK293) cells. Toxicology 272(1–3):11–16

    Article  CAS  Google Scholar 

  86. Walker VG, Li Z, Hulderman T, Schwegler-Berry D, Kashon ML, Simeonova PP (2009) Potential in vitro effects of carbon nanotubes on human aortic endothelial cells. Toxicol Appl Pharmacol 236(3):319–328

    Article  CAS  Google Scholar 

  87. Crouzier D, Follot S, Gentilhomme E, Flahaut E, Arnaud R, Dabouis V, Castellarin C, Debouzy JC (2010) Carbon nanotubes induce inflammation but decrease the production of reactive oxygen species in lung. Toxicology 272(1–3):39–45

    Article  CAS  Google Scholar 

  88. Elgrabli D, Abella-Gallart S, Robidel F, Rogerieux F, Boczkowski J, Lacroix G (2008) Induction of apoptosis and absence of inflammation in rat lung after intratracheal instillation of multiwalled carbon nanotubes. Toxicology 253(1–3):131–136

    Article  CAS  Google Scholar 

  89. Han SG, Andrews R, Gairola CG (2010) Acute pulmonary response of mice to multi-wall carbon nanotubes. Inhal Toxicol 22(4):340–347

    Article  CAS  Google Scholar 

  90. Ma-Hock L, Treumann S, Strauss V, Brill S, Luizi F, Mertler M, Wiench K, Gamer AO, van Ravenzwaay B, Landsiedel R (2009) Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci 112(2):468–481

    Article  CAS  Google Scholar 

  91. Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, Leonard S, Battelli L, Schwegler-Berry D, Friend S, Andrew M, Chen BT, Tsuruoka S, Endo M, Castranova V (2010) Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269(2–3):136–147

    Article  CAS  Google Scholar 

  92. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3(7):423–428

    Article  CAS  Google Scholar 

  93. Ji Z, Zhang D, Li L, Shen X, Deng X, Dong L, Wu M, Liu Y (2009) The hepatotoxicity of multi-walled carbon nanotubes in mice. Nanotechnology 20(44):445101

    Article  CAS  Google Scholar 

  94. Mitchell LA, Lauer FT, Burchiel SW, McDonald JD (2009) Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat Nanotechnol 4(7):451–456

    Article  CAS  Google Scholar 

  95. Nygaard UC, Hansen JS, Samuelsen M, Alberg T, Marioara CD, Lovik M (2009) Single-walled and multi-walled carbon nanotubes promote allergic immune responses in mice. Toxicol Sci 109(1):113–123

    Article  CAS  Google Scholar 

  96. Park EJ, Cho WS, Jeong J, Yi J, Choi K, Park K (2009) Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation. Toxicology 259(3):113–121

    Article  CAS  Google Scholar 

  97. Patlolla AK, Hussain SM, Schlager JJ, Patlolla S, Tchounwou PB (2010) Comparative study of the clastogenicity of functionalized and nonfunctionalized multiwalled carbon nanotubes in bone marrow cells of Swiss-Webster mice. Environ Toxicol

  98. Asharani PV, Serina NG, Nurmawati MH, Wu YL, Gong Z, Valiyaveettil S (2008) Impact of multi-walled carbon nanotubes on aquatic species. J Nanosci Nanotechnol 8(7):3603–3609

    Article  CAS  Google Scholar 

  99. Cheng J, Chan CM, Veca LM, Poon WL, Chan PK, Qu L, Sun YP, Cheng SH (2009) Acute and long-term effects after single loading of functionalized multi-walled carbon nanotubes into zebrafish (Danio rerio). Toxicol Appl Pharmacol 235(2):216–225

    Google Scholar 

  100. Kang S, Mauter MS, Elimelech M (2008) Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ Sci Technol 42(19):7528–7534

    Article  CAS  Google Scholar 

  101. Li JJ, Hartono D, Ong CN, Bay BH, Yung LY (2010) Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials 31(23):5996–6003

    Article  CAS  Google Scholar 

  102. Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5(18):2067–2076

    Article  CAS  Google Scholar 

  103. Tarantola M, Schneider D, Sunnick E, Adam H, Pierrat S, Rosman C, Breus V, Sonnichsen C, Basche T, Wegener J, Janshoff A (2009) Cytotoxicity of metal and semiconductor nanoparticles indicated by cellular micromotility. ACS Nano 3(1):213–222

    Article  CAS  Google Scholar 

  104. Cho WS, Cho M, Jeong J, Choi M, Cho HY, Han BS, Kim SH, Kim HO, Lim YT, Chung BH (2009) Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol 236(1):16–24

    Article  CAS  Google Scholar 

  105. Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, Olmedo I, Clos A, Sadagopa Ramanujam VM, Urayama A, Vergara L, Kogan MJ, Soto C (2010) Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Commun 393(4):649-655

    Google Scholar 

  106. Wiwanitkit V, Sereemaspun A, Rojanathanes R (2009) Effect of gold nanoparticles on spermatozoa: the first world report. Fertil Steril 91(1):e7–e8

    Article  Google Scholar 

  107. Farkas J, Christian P, Urrea JA, Roos N, Hassellov M, Tollefsen KE, Thomas KV (2010) Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat Toxicol 96(1):44–52

    Google Scholar 

  108. Asharani PV, Hande MP, Valiyaveettil S (2009) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10:65

    Article  CAS  Google Scholar 

  109. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Article  CAS  Google Scholar 

  110. Foldbjerg R, Dang DA, Autrup H (2010) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol (in press)

  111. Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179(3):130–139

    Article  CAS  Google Scholar 

  112. Kawata K, Osawa M, Okabe S (2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43(15):6046–6051

    Article  CAS  Google Scholar 

  113. Miura N, Shinohara Y (2009) Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells. Biochem Biophys Res Commun 390(3):733–737

    Article  CAS  Google Scholar 

  114. Yang W, Shen C, Ji Q, An H, Wang J, Liu Q, Zhang Z (2009) Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 20(8):085102

    Article  CAS  Google Scholar 

  115. Rahman MF, Wang J, Patterson TA, Saini UT, Robinson BL, Newport GD, Murdock RC, Schlager JJ, Hussain SM, Ali SF (2009) Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol Lett 187(1):15–21

    Article  CAS  Google Scholar 

  116. Sharma HS, Hussain S, Schlager J, Ali SF, Sharma A (2010) Influence of nanoparticles on blood–brain barrier permeability and brain edema formation in rats. Acta Neurochir Suppl 106:359–364

    Google Scholar 

  117. Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5(16):1897–1910

    Article  CAS  Google Scholar 

  118. Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J, Ryu DY (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol (in press)

  119. Ringwood AH, McCarthy M, Bates TC, Carroll DL (2010) The effects of silver nanoparticles on oyster embryos. Mar Environ Res (in press)

  120. Scown TM, Santos EM, Johnston BD, Gaiser B, Baalousha M, Mitov S, Lead JR, Stone V, Fernandes TF, Jepson M, van Aerle R, Tyler CR (2010) Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115(2):521–534

    Article  CAS  Google Scholar 

  121. Wise JP Sr, Goodale BC, Wise SS, Craig GA, Pongan AF, Walter RB, Thompson WD, Ng AK, Aboueissa AM, Mitani H, Spalding MJ, Mason MD (2010) Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquat Toxicol 97(1):34–41

    Article  CAS  Google Scholar 

  122. Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242(3):263–269

    Google Scholar 

  123. Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu DY, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43(10):3933–3940

    Google Scholar 

  124. Cho SJ, Maysinger D, Jain M, Roder B, Hackbarth S, Winnik FM (2007) Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23(4):1974–1980

    Article  CAS  Google Scholar 

  125. Li KG, Chen JT, Bai SS, Wen X, Song SY, Yu Q, Li J, Wang YQ (2009) Intracellular oxidative stress and cadmium ions release induce cytotoxicity of unmodified cadmium sulfide quantum dots. Toxicol In Vitro 23(6):1007–1013

    Article  CAS  Google Scholar 

  126. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2007) Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 127(1):143–153

    Article  CAS  Google Scholar 

  127. Su Y, He Y, Lu H, Sai L, Li Q, Li W, Wang L, Shen P, Huang Q, Fan C (2009) The cytotoxicity of cadmium-based, aqueous-phase-synthesized quantum dots and its modulation by surface coating. Biomaterials 30(1):19–25

    Google Scholar 

  128. Tang M, Xing T, Zeng J, Wang H, Li C, Yin S, Yan D, Deng H, Liu J, Wang M, Chen J, Ruan DY (2008) Unmodified CdSe quantum dots induce elevation of cytoplasmic calcium levels and impairment of functional properties of sodium channels in rat primary cultured hippocampal neurons. Environ Health Perspect 116(7):915–922

    Article  CAS  Google Scholar 

  129. Wang L, Nagesha DK, Selvarasah S, Dokmeci MR, Carrier RL (2008) Toxicity of CdSe nanoparticles in Caco-2 cell cultures. J Nanobiotechnology 6:11

    Article  CAS  Google Scholar 

  130. Zhang Y, Chen W, Zhang J, Liu J, Chen G, Pope C (2007) In vitro and in vivo toxicity of CdTe nanoparticles. J Nanosci Nanotechnol 7(2):497–503

    Article  CAS  Google Scholar 

  131. Chu M, Wu Q, Yang H, Yuan R, Hou S, Yang Y, Zou Y, Xu S, Xu K, Ji A, Sheng L (2010) Transfer of quantum dots from pregnant mice to pups across the placental barrier. Small 6(5):670–678

    Article  CAS  Google Scholar 

  132. Hsieh MS, Shiao NH, Chan WH (2009) Cytotoxic effects of CdSe quantum dots on maturation of mouse oocytes, fertilization, and fetal development. Int J Mol Sci 10(5):2122–2135

    Article  CAS  Google Scholar 

  133. Mortensen LJ, Oberdorster G, Pentland AP, Delouise LA (2008) In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. Nano Lett 8(9):2779–2787

    Article  CAS  Google Scholar 

  134. Kim J, Park Y, Yoon TH, Yoon CS, Choi K (2010) Phototoxicity of CdSe/ZnSe quantum dots with surface coatings of 3-mercaptopropionic acid or tri-n-octylphosphine oxide/gum arabic in Daphnia magna under environmentally relevant UV-B light. Aquat Toxicol 97(2):116–124

    Google Scholar 

  135. Herzog E, Byrne HJ, Casey A, Davoren M, Lenz AG, Maier KL, Duschl A, Oostingh GJ (2009) SWCNT suppress inflammatory mediator responses in human lung epithelium in vitro. Toxicol Appl Pharmacol 234(3):378–390

    Article  CAS  Google Scholar 

  136. Lindberg HK, Falck GC, Suhonen S, Vippola M, Vanhala E, Catalan J, Savolainen K, Norppa H (2009) Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol Lett 186(3):166–173

    Article  CAS  Google Scholar 

  137. Migliore L, Saracino D, Bonelli A, Colognato R, D’Errico MR, Magrini A, Bergamaschi A, Bergamaschi E (2010) Carbon nanotubes induce oxidative DNA damage in RAW 264.7 cells. Environ Mol Mutagen 51(4):294–303

    Google Scholar 

  138. Murray AR, Kisin E, Leonard SS, Young SH, Kommineni C, Kagan VE, Castranova V, Shvedova AA (2009) Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 257(3):161–171

    Article  CAS  Google Scholar 

  139. Pacurari M, Yin XJ, Zhao J, Ding M, Leonard SS, Schwegler-Berry D, Ducatman BS, Sbarra D, Hoover MD, Castranova V, Vallyathan V (2008) Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect 116(9):1211–1217

    Article  CAS  Google Scholar 

  140. Wang L, Mercer RR, Rojanasakul Y, Qiu A, Lu Y, Scabilloni JF, Wu N, Castranova V (2010) Direct fibrogenic effects of dispersed single-walled carbon nanotubes on human lung fibroblasts. J Toxicol Environ Health A 73(5):410–422

    Article  CAS  Google Scholar 

  141. Witasp E, Shvedova AA, Kagan VE, Fadeel B (2009) Single-walled carbon nanotubes impair human macrophage engulfment of apoptotic cell corpses. Inhal Toxicol 21(Suppl 1):131–136

    Article  CAS  Google Scholar 

  142. Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, Biris AS (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 4(6):3181-3186

    Google Scholar 

  143. Bihari P, Holzer M, Praetner M, Fent J, Lerchenberger M, Reichel CA, Rehberg M, Lakatos S, Krombach F (2010) Single-walled carbon nanotubes activate platelets and accelerate thrombus formation in the microcirculation. Toxicology 269(2–3):148–154

    Article  CAS  Google Scholar 

  144. Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Moller P (2009) Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect 117(5):703–708

    CAS  Google Scholar 

  145. Yang ST, Wang X, Jia G, Gu Y, Wang T, Nie H, Ge C, Wang H, Liu Y (2008) Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol Lett 181(3):182–189

    Article  CAS  Google Scholar 

  146. Kang S, Mauter MS, Elimelech M (2009) Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ Sci Technol 43(7):2648–2653

    Article  CAS  Google Scholar 

  147. Liu X, Vinson D, Abt D, Hurt RH, Rand DM (2009) Differential toxicity of carbon nanomaterials in Drosophila: larval dietary uptake is benign, but adult exposure causes locomotor impairment and mortality. Environ Sci Technol 43(16):6357–6363

    Google Scholar 

  148. Jacobsen NR, Pojana G, White P, Moller P, Cohn CA, Korsholm KS, Vogel U, Marcomini A, Loft S, Wallin H (2008) Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C(60) fullerenes in the FE1-Mutatrade markMouse lung epithelial cells. Environ Mol Mutagen 49(6):476–487

    Article  CAS  Google Scholar 

  149. Park EJ, Kim H, Kim Y, Yi J, Choi K, Park K (2010) Carbon fullerenes (C60s) can induce inflammatory responses in the lung of mice. Toxicol Appl Pharmacol 244(2):226–233

    Article  CAS  Google Scholar 

  150. Brunet L, Lyon DY, Hotze EM, Alvarez PJ, Wiesner MR (2009) Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ Sci Technol 43(12):4355–4360

    Article  CAS  Google Scholar 

  151. Cho M, Fortner JD, Hughes JB, Kim JH (2009) Escherichia coli inactivation by water-soluble, ozonated C60 derivative: kinetics and mechanisms. Environ Sci Technol 43(19):7410–7415

    Google Scholar 

  152. Canesi L, Ciacci C, Vallotto D, Gallo G, Marcomini A, Pojana G (2010) In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquat Toxicol 96(2):151–158

    Google Scholar 

  153. Ringwood AH, Levi-Polyachenko N, Carroll DL (2009) Fullerene exposures with oysters: embryonic, adult, and cellular responses. Environ Sci Technol 43(18):7136–7141

    Article  CAS  Google Scholar 

  154. Tao X, Fortner JD, Zhang B, He Y, Chen Y, Hughes JB (2009) Effects of aqueous stable fullerene nanocrystals (nC60) on Daphnia magna: evaluation of sub-lethal reproductive responses and accumulation. Chemosphere 77(11):1482–1487

    Google Scholar 

  155. Yang XY, Edelmann RE, Oris JT (2010) Suspended C60 nanoparticles protect against short-term UV and fluoranthene photo-induced toxicity, but cause long-term cellular damage in Daphnia magna. Aquat Toxicol (in press)

  156. Zhu X, Zhu L, Lang Y, Chen Y (2008) Oxidative stress and growth inhibition in the freshwater fish Carassius auratus induced by chronic exposure to sublethal fullerene aggregates. Environ Toxicol Chem 27(9):1979–1985

    Google Scholar 

  157. Chen YC, Hsiao JK, Liu HM, Lai IY, Yao M, Hsu SC, Ko BS, Yang CS, Huang DM (2010) The inhibitory effect of superparamagnetic iron oxide nanoparticle (Ferucarbotran) on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells. Toxicol Appl Pharmacol 245(2):272–279

    Article  CAS  Google Scholar 

  158. Choi SJ, Oh JM, Choy JH (2009) Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells. J Inorg Biochem 103(3):463–471

    Article  CAS  Google Scholar 

  159. Eom HJ, Choi J (2009) Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol Lett 187(2):77–83

    Google Scholar 

  160. Fahmy B, Cormier SA (2009) Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro 23(7):1365–1371

    Article  CAS  Google Scholar 

  161. Falck GC, Lindberg HK, Suhonen S, Vippola M, Vanhala E, Catalan J, Savolainen K, Norppa H (2009) Genotoxic effects of nanosized and fine TiO2. Hum Exp Toxicol 28(6–7):339–352

    Google Scholar 

  162. Huang CC, Aronstam RS, Chen DR, Huang YW (2010) Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol In Vitro 24(1):45–55

    Article  CAS  Google Scholar 

  163. Hussain S, Thomassen LC, Ferecatu I, Borot MC, Andreau K, Martens JA, Fleury J, Baeza-Squiban A, Marano F, Boland S (2010) Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells. Part Fibre Toxicol 7:10

    Article  CAS  Google Scholar 

  164. Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21(9):1726–1732

    Article  CAS  Google Scholar 

  165. Karlsson HL, Gustafsson J, Cronholm P, Moller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol Lett 188(2):112–118

    Google Scholar 

  166. Kim IS, Baek M, Choi SJ (2010) Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells. J Nanosci Nanotechnol 10(5):3453–3458

    Google Scholar 

  167. Midander K, Cronholm P, Karlsson HL, Elihn K, Moller L, Leygraf C, Wallinder IO (2009) Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study. Small 5(3):389–399

    Article  CAS  Google Scholar 

  168. Ogami A, Morimoto Y, Myojo T, Oyabu T, Murakami M, Todoroki M, Nishi K, Kadoya C, Yamamoto M, Tanaka I (2009) Pathological features of different sizes of nickel oxide following intratracheal instillation in rats. Inhal Toxicol 21(10):812–818

    Article  CAS  Google Scholar 

  169. Tsaousi A, Jones E, Case CP (2010) The in vitro genotoxicity of orthopaedic ceramic (Al2O3) and metal (CoCr alloy) particles. Mutat Res 697(1–2):1–9

    Google Scholar 

  170. Zhao J, Xu L, Zhang T, Ren G, Yang Z (2009) Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons. Neurotoxicology 30(2):220–230

    Article  CAS  Google Scholar 

  171. Gaiser BK, Fernandes TF, Jepson M, Lead JR, Tyler CR, Stone V (2009) Assessing exposure, uptake and toxicity of silver and cerium dioxide nanoparticles from contaminated environments. Environ Health 8(Suppl 1):S2

    Article  CAS  Google Scholar 

  172. Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut 157(5):1619–1625

    Article  CAS  Google Scholar 

  173. Kasemets K, Ivask A, Dubourguier HC, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23(6):1116–1122

    Google Scholar 

  174. Ma H, Bertsch PM, Glenn TC, Kabengi NJ, Williams PL (2009) Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ Toxicol Chem 28(6):1324–1330

    Google Scholar 

  175. Miller RJ, Lenihan HS, Muller EB, Tseng N, Hanna SK, Keller AA (2010) Impacts of metal oxide nanoparticles on marine phytoplankton. Environ Sci Technol (in press)

  176. Zhu X, Wang J, Zhang X, Chang Y, Chen Y (2009) The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology 20(19):195103

    Google Scholar 

  177. Hassellov M, Readman JW, Ranville JF, Tiede K (2008) Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17(5):344–361

    Article  CAS  Google Scholar 

  178. Sermsri W, Jarujamrus P, Shiowatana J, Siripinyanond A (2010) Flow field-flow fractionation: a versatile approach for size characterization of alpha-tocopherol-induced enlargement of gold nanoparticles. Anal Bioanal Chem 396(8):3079–3085

    Article  CAS  Google Scholar 

  179. Scheffer A, Engelhard C, Sperling M, Buscher W (2008) ICP-MS as a new tool for the determination of gold nanoparticles in bioanalytical applications. Anal Bioanal Chem 390(1):249–252

    Article  CAS  Google Scholar 

  180. Liu FK, Lin YY, Wu CH (2005) Highly efficient approach for characterizing nanometer-sized gold particles by capillary electrophoresis. Anal Chim Acta 528(2):249–254

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the funding received from the Council of Scientific and Industrial Research, New Delhi, India, under NWP35, SIP 008. Funding by the Department of Science and Technology, Government of India, under the nanomission programme (DST-NSTI grant no. SR/S5/NM-01/2007) and UKIERI-DST (grant no. DST/INT/UKIERI/SA/P-10/2008) is also acknowledged. VS thanks the Council of Scientific and Industrial Research (New Delhi) for the award of a Senior Research Fellowship. IITR communication No. 2858.

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Dhawan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhawan, A., Sharma, V. Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398, 589–605 (2010). https://doi.org/10.1007/s00216-010-3996-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3996-x

Keywords

Navigation