Abstract
We report the analytical and in vitro antibacterial activity of glucosamine-functionalized silver glyconanoparticles. Morphological characterization ensured the surface topography and particle size distribution of both silver and glucosamine–silver nanoparticles. Surface plasmon resonance of both types of nanoparticle was determined from UV–visible spectroscopy using four different sample concentrations (10–40 μL). The resulting functionalized glyconanoparticles show maximum absorbance with a red shift of 30 ± 5 nm (390–400 nm) from their initial absorbance (425–430 nm). FT-Raman and 1H-NMR spectroscopic measurement confirmed the surface functionalization of glucosamine on the silver surface through the carbonyl group of a secondary amide linkage (–NH–CO–), elucidated by the conjugation of N-hydroxysuccinimide (NHS)-terminated silver nanoparticles and the amino group of glucosamine. Antimicrobial experiments with well-characterized silver nanoparticles (AgNPs) and glucosamine-functionalized silver nanoparticles (GlcN-AgNPs) demonstrate that GlcN-AgNPs have similar and enhanced minimum inhibitory concentration (MIC) against eight gram-negative and eight gram-positive bacteria compared with AgNPs. MIC data shows that Klebsiella pneumoniae (ATCC 700603) and Bacillus cereus isolate express high levels of inhibition, with the quantity and magnitude of inhibition being higher in the presence of GlcN-AgNPs.

Glucosamine-functionalized silver glyconanoparticles as antibacterial agent
This is a preview of subscription content, access via your institution.






References
- 1.
Obermaier B, Klein M, Koedel U, Pfister HW (2006) Drug Discov Today 3:105–112
- 2.
Ewald C, Kuhn S, Kalff R (2006) Neurosurg Rev 29:163–167
- 3.
Li Z, Lee D, Sheng XX, Cohen RE, Rubner MF (2006) Langmuir 22:9820–9823
- 4.
Chen YY, Wang C, Liu HY, Qiu JS, Bao XH (2005) Chem Commun 42:5298–5300
- 5.
Setua P, Chakraborty A, Seth D, Bhatta MU, Satyam PV, Sarkar N (2007) J Phys Chem C 111:3901–3907
- 6.
Sambhy V, MacBride MM, Peterson BR, Sen A (2006) J Am Chem Soc 128:9798–9808
- 7.
Panaek A, Kvitek L, Prucek R, Kola M, Veeova R, Pizurova N, Sharma VK, Nevena T, Zboril R (2006) J Phys Chem B 110:16248–16253
- 8.
Vijaya KR, Ghouse MM, Shaik J, Angel H, Komal V, Shree RS, Shreekumar P (2010) Nanotechnology 21:095102.1–095102.11
- 9.
Aymonier C, Schlotterbeck U, Antonietti L, Zacharias P, Thomann R, Tiller JC, Mecking S (2002) Chem Commun 24:3018–3019
- 10.
Dongwei W, Wuyong S, Weiping Q, Yongzhong Y, Xiaoyuan M (2009) Carbohydr Res 344:2375–2382
- 11.
Jie-Xin W, Li-Xiong W, Zhi-Hui W, Jian-Feng C (2006) Mater Chem Phys 96:90–97
- 12.
Sökmen M, Değerli S, Aslan A (2008) Exp Parasitol 19(1):44–48
- 13.
Zheng J, Hua Y, Xinjun L, Shanqing Z (2008) Appl Surf Sci 254(6):1630–1635
- 14.
Kim J, Kuk E, Yu K, Kim J, Park S, Lee H, Kim S, Park Y, Park Y, Hwang C (2007) Nanomedicine 3:95–101
- 15.
Ju HW, Koh EJ, Kim SH, Kim KI, Lee H, Hong SW (2009) J Plant Physiol 166:203–212
- 16.
Kim DS, Park KS, Jeong KC, Lee BI, Lee CH, Kim SY (2009) Cancer Lett 273:243–249
- 17.
Veerapandian M, Yun KS (2010) Synth React Inorg Met-Org Nano-Met Chem 40(1):56–64
- 18.
De Paz JL, Ojeda R, Barrientos AG, Penadés S, Martín-Lomas M (2005) Tetrahedron Asymmetry 16:149–158
- 19.
De la Fuente JM, Barrientos AG, Rojas TC, Rojo J, Cañada J, Fernández A, Penadés S (2001) Angew Chem Int Ed 40:2257–2261
- 20.
Barrientos AG, De la Fuente JM, Rojas TC, Fernández A, Penadés S (2003) Chem Eur J 9:1909–1921
- 21.
De la Fuente JM, Penadés S (2005) Tetrahedron Asymmetry 16:387–391
- 22.
Penades S, Martin-Lomas M, De la Fuente JM, Rademacher TW (2004) Magnetic nanoparticles. WO Patent 2004/108165 A2
- 23.
De la Fuente JM, Penadés S (2006) Biochim Biophys Acta 1760:636–651
- 24.
Veerapandian M, Yun KS (2010) Ultrasonochemical-assisted fabrication and evaporation-induced self-assembly (EISA) of POSS-SiO2@Ag core/ABA triblock copolymer nanocomposite film. Polym Compos. doi:10.1002/pc.20951
- 25.
Wickler MA et al (2009) Methods for dilution antimicrobial susceptibility testing for bacteria that grow aerobically. Clinical Laboratory and Standards Institute, Wayne, Pennsylvania
- 26.
Awati PS, Awate SW, Shah PP, Ramaswamy V (2003) Catal Commun 4:393–400
- 27.
Aslan K, Prez-Luna VH (2002) Langmuir 18(16):6059–6065
- 28.
Goeken M, Kempf M (1999) Acta Mater 47:1043–1052
- 29.
Maruyama O, Senda Y, Omi S (1999) J Non-Cryst Solids 259:100–106
- 30.
Chen W, Zhang J, Shi L, Di Y, Fang Q, Cai W (2003) Compos Sci Technol 63:1209–1212
- 31.
Von Fragstein C, Schoenes FJZ (1967) Z Phys 198:477
- 32.
She CY, Dinh ND, Anthony TT (1974) Biochim Biophys Acta 372:345–357
- 33.
Oya M, Negishi T (1984) Bull Chem Soc Jpn 57:439–441
- 34.
Butkus MA, Edling L, Labare MP (2003) J Water Supply Res Technol AQUA 52:407–416
- 35.
Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) J Biomed Mater Res 52:662–668
- 36.
Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) Nanotechnology 16:2346–2353
- 37.
Baker C, Pradhan A, Pakstis L, Pochan DJ, Ismat Shah S (2005) J Nanosci Nanotechnol 5:244–249
- 38.
Cho KH, Park JE, Osaka T, Park SG (2005) Electrochim Acta 51:956–960
- 39.
Sondi I, Salopek-Sondi B (2004) J Colloid Interface Sci 275:177–182
- 40.
Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM (2008) J Mater Sci Technol 24:192–196
- 41.
Pal S, Tak, Song JM (2007) Appl Environ Microbiol 73:1712–1720
- 42.
Aleš P, Libor K, Robert P, Milan K, Renata V, Naděžda P, Virender KS, Tatĵana N, Radek Z (2006) J Phys Chem B 110:16248–16253
- 43.
Gogoi SK, Gopinath P, Paul A, Ramesh A, Ghosh SS, Chattopadhyay A (2006) Langmuir 22:9322–9328
- 44.
Uparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Acta Biomater 4:707–716
- 45.
Kawahara K, Tsuruda K, Morishita M, Uchida M (2000) Dent Mater 16:452–455
- 46.
Nanda A, Saravanan M (2009) Nanomedicine 5:452–456
- 47.
Yeliz G, Resįt Ö, Yunus B (2008) Ann Clin Microbiol Antimicrob 7(17):1–6
- 48.
Jon JK, Anthony JC, Joseph PT (1972) Antimicrob Agents Chemother 2(6):492–498
- 49.
Marshall S, Bacote V, Traxinger RR (1991) J Biol Chem 266:4706–4712
- 50.
McClain DA (2002) J Diabetes Complicat 16:72–80
- 51.
Hua J, Sakamoto K, Nagaoka I (2002) J Leukoc Biol 71:632–640
- 52.
Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) Toxicol In Vitro 19:975–983
- 53.
Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Ecotoxicology 17:372–386
Acknowledgements
This work was supported by Kyungwon University research fund in 2010. This work was also supported by GRRC program of Gyeonggi province [2009-B02, Development of biodevice using DNA tile structure].
Author information
Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Figure S1
Demonstrates the digital photographs of MIC of AgNPs (a) and GlcNAgNPs (b) against different gram-negative (1–8) and gram-positive bacterial strains (9–16) (PDF 917 kb)
Rights and permissions
About this article
Cite this article
Veerapandian, M., Lim, S.K., Nam, H.M. et al. Glucosamine-functionalized silver glyconanoparticles: characterization and antibacterial activity. Anal Bioanal Chem 398, 867–876 (2010). https://doi.org/10.1007/s00216-010-3964-5
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- Nanoparticle
- Silver
- Glucosamine
- Glyconanoparticle
- Antibacterial agent