Glucosamine-functionalized silver glyconanoparticles: characterization and antibacterial activity


We report the analytical and in vitro antibacterial activity of glucosamine-functionalized silver glyconanoparticles. Morphological characterization ensured the surface topography and particle size distribution of both silver and glucosamine–silver nanoparticles. Surface plasmon resonance of both types of nanoparticle was determined from UV–visible spectroscopy using four different sample concentrations (10–40 μL). The resulting functionalized glyconanoparticles show maximum absorbance with a red shift of 30 ± 5 nm (390–400 nm) from their initial absorbance (425–430 nm). FT-Raman and 1H-NMR spectroscopic measurement confirmed the surface functionalization of glucosamine on the silver surface through the carbonyl group of a secondary amide linkage (–NH–CO–), elucidated by the conjugation of N-hydroxysuccinimide (NHS)-terminated silver nanoparticles and the amino group of glucosamine. Antimicrobial experiments with well-characterized silver nanoparticles (AgNPs) and glucosamine-functionalized silver nanoparticles (GlcN-AgNPs) demonstrate that GlcN-AgNPs have similar and enhanced minimum inhibitory concentration (MIC) against eight gram-negative and eight gram-positive bacteria compared with AgNPs. MIC data shows that Klebsiella pneumoniae (ATCC 700603) and Bacillus cereus isolate express high levels of inhibition, with the quantity and magnitude of inhibition being higher in the presence of GlcN-AgNPs.

Glucosamine-functionalized silver glyconanoparticles as antibacterial agent

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Obermaier B, Klein M, Koedel U, Pfister HW (2006) Drug Discov Today 3:105–112

    Article  Google Scholar 

  2. 2.

    Ewald C, Kuhn S, Kalff R (2006) Neurosurg Rev 29:163–167

    CAS  Article  Google Scholar 

  3. 3.

    Li Z, Lee D, Sheng XX, Cohen RE, Rubner MF (2006) Langmuir 22:9820–9823

    CAS  Article  Google Scholar 

  4. 4.

    Chen YY, Wang C, Liu HY, Qiu JS, Bao XH (2005) Chem Commun 42:5298–5300

    Article  Google Scholar 

  5. 5.

    Setua P, Chakraborty A, Seth D, Bhatta MU, Satyam PV, Sarkar N (2007) J Phys Chem C 111:3901–3907

    CAS  Article  Google Scholar 

  6. 6.

    Sambhy V, MacBride MM, Peterson BR, Sen A (2006) J Am Chem Soc 128:9798–9808

    CAS  Article  Google Scholar 

  7. 7.

    Panaek A, Kvitek L, Prucek R, Kola M, Veeova R, Pizurova N, Sharma VK, Nevena T, Zboril R (2006) J Phys Chem B 110:16248–16253

    Article  Google Scholar 

  8. 8.

    Vijaya KR, Ghouse MM, Shaik J, Angel H, Komal V, Shree RS, Shreekumar P (2010) Nanotechnology 21:095102.1–095102.11

    Google Scholar 

  9. 9.

    Aymonier C, Schlotterbeck U, Antonietti L, Zacharias P, Thomann R, Tiller JC, Mecking S (2002) Chem Commun 24:3018–3019

    Article  Google Scholar 

  10. 10.

    Dongwei W, Wuyong S, Weiping Q, Yongzhong Y, Xiaoyuan M (2009) Carbohydr Res 344:2375–2382

    Article  Google Scholar 

  11. 11.

    Jie-Xin W, Li-Xiong W, Zhi-Hui W, Jian-Feng C (2006) Mater Chem Phys 96:90–97

    Article  Google Scholar 

  12. 12.

    Sökmen M, Değerli S, Aslan A (2008) Exp Parasitol 19(1):44–48

    Article  Google Scholar 

  13. 13.

    Zheng J, Hua Y, Xinjun L, Shanqing Z (2008) Appl Surf Sci 254(6):1630–1635

    CAS  Article  Google Scholar 

  14. 14.

    Kim J, Kuk E, Yu K, Kim J, Park S, Lee H, Kim S, Park Y, Park Y, Hwang C (2007) Nanomedicine 3:95–101

    CAS  Google Scholar 

  15. 15.

    Ju HW, Koh EJ, Kim SH, Kim KI, Lee H, Hong SW (2009) J Plant Physiol 166:203–212

    CAS  Article  Google Scholar 

  16. 16.

    Kim DS, Park KS, Jeong KC, Lee BI, Lee CH, Kim SY (2009) Cancer Lett 273:243–249

    CAS  Article  Google Scholar 

  17. 17.

    Veerapandian M, Yun KS (2010) Synth React Inorg Met-Org Nano-Met Chem 40(1):56–64

    CAS  Google Scholar 

  18. 18.

    De Paz JL, Ojeda R, Barrientos AG, Penadés S, Martín-Lomas M (2005) Tetrahedron Asymmetry 16:149–158

    Article  Google Scholar 

  19. 19.

    De la Fuente JM, Barrientos AG, Rojas TC, Rojo J, Cañada J, Fernández A, Penadés S (2001) Angew Chem Int Ed 40:2257–2261

    Article  Google Scholar 

  20. 20.

    Barrientos AG, De la Fuente JM, Rojas TC, Fernández A, Penadés S (2003) Chem Eur J 9:1909–1921

    CAS  Article  Google Scholar 

  21. 21.

    De la Fuente JM, Penadés S (2005) Tetrahedron Asymmetry 16:387–391

    Article  Google Scholar 

  22. 22.

    Penades S, Martin-Lomas M, De la Fuente JM, Rademacher TW (2004) Magnetic nanoparticles. WO Patent 2004/108165 A2

  23. 23.

    De la Fuente JM, Penadés S (2006) Biochim Biophys Acta 1760:636–651

    Google Scholar 

  24. 24.

    Veerapandian M, Yun KS (2010) Ultrasonochemical-assisted fabrication and evaporation-induced self-assembly (EISA) of POSS-SiO2@Ag core/ABA triblock copolymer nanocomposite film. Polym Compos. doi:10.1002/pc.20951

    Google Scholar 

  25. 25.

    Wickler MA et al (2009) Methods for dilution antimicrobial susceptibility testing for bacteria that grow aerobically. Clinical Laboratory and Standards Institute, Wayne, Pennsylvania

  26. 26.

    Awati PS, Awate SW, Shah PP, Ramaswamy V (2003) Catal Commun 4:393–400

    CAS  Article  Google Scholar 

  27. 27.

    Aslan K, Prez-Luna VH (2002) Langmuir 18(16):6059–6065

    CAS  Article  Google Scholar 

  28. 28.

    Goeken M, Kempf M (1999) Acta Mater 47:1043–1052

    Article  Google Scholar 

  29. 29.

    Maruyama O, Senda Y, Omi S (1999) J Non-Cryst Solids 259:100–106

    CAS  Article  Google Scholar 

  30. 30.

    Chen W, Zhang J, Shi L, Di Y, Fang Q, Cai W (2003) Compos Sci Technol 63:1209–1212

    CAS  Article  Google Scholar 

  31. 31.

    Von Fragstein C, Schoenes FJZ (1967) Z Phys 198:477

    Article  Google Scholar 

  32. 32.

    She CY, Dinh ND, Anthony TT (1974) Biochim Biophys Acta 372:345–357

    CAS  Google Scholar 

  33. 33.

    Oya M, Negishi T (1984) Bull Chem Soc Jpn 57:439–441

    CAS  Article  Google Scholar 

  34. 34.

    Butkus MA, Edling L, Labare MP (2003) J Water Supply Res Technol AQUA 52:407–416

    CAS  Google Scholar 

  35. 35.

    Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) J Biomed Mater Res 52:662–668

    CAS  Article  Google Scholar 

  36. 36.

    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) Nanotechnology 16:2346–2353

    CAS  Article  Google Scholar 

  37. 37.

    Baker C, Pradhan A, Pakstis L, Pochan DJ, Ismat Shah S (2005) J Nanosci Nanotechnol 5:244–249

    CAS  Article  Google Scholar 

  38. 38.

    Cho KH, Park JE, Osaka T, Park SG (2005) Electrochim Acta 51:956–960

    CAS  Article  Google Scholar 

  39. 39.

    Sondi I, Salopek-Sondi B (2004) J Colloid Interface Sci 275:177–182

    CAS  Article  Google Scholar 

  40. 40.

    Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM (2008) J Mater Sci Technol 24:192–196

    CAS  Google Scholar 

  41. 41.

    Pal S, Tak, Song JM (2007) Appl Environ Microbiol 73:1712–1720

    CAS  Article  Google Scholar 

  42. 42.

    Aleš P, Libor K, Robert P, Milan K, Renata V, Naděžda P, Virender KS, Tatĵana N, Radek Z (2006) J Phys Chem B 110:16248–16253

    Article  Google Scholar 

  43. 43.

    Gogoi SK, Gopinath P, Paul A, Ramesh A, Ghosh SS, Chattopadhyay A (2006) Langmuir 22:9322–9328

    CAS  Article  Google Scholar 

  44. 44.

    Uparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Acta Biomater 4:707–716

    Article  Google Scholar 

  45. 45.

    Kawahara K, Tsuruda K, Morishita M, Uchida M (2000) Dent Mater 16:452–455

    CAS  Article  Google Scholar 

  46. 46.

    Nanda A, Saravanan M (2009) Nanomedicine 5:452–456

    CAS  Google Scholar 

  47. 47.

    Yeliz G, Resįt Ö, Yunus B (2008) Ann Clin Microbiol Antimicrob 7(17):1–6

    Google Scholar 

  48. 48.

    Jon JK, Anthony JC, Joseph PT (1972) Antimicrob Agents Chemother 2(6):492–498

    Google Scholar 

  49. 49.

    Marshall S, Bacote V, Traxinger RR (1991) J Biol Chem 266:4706–4712

    CAS  Google Scholar 

  50. 50.

    McClain DA (2002) J Diabetes Complicat 16:72–80

    Article  Google Scholar 

  51. 51.

    Hua J, Sakamoto K, Nagaoka I (2002) J Leukoc Biol 71:632–640

    CAS  Google Scholar 

  52. 52.

    Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) Toxicol In Vitro 19:975–983

    CAS  Article  Google Scholar 

  53. 53.

    Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Ecotoxicology 17:372–386

    CAS  Article  Google Scholar 

Download references


This work was supported by Kyungwon University research fund in 2010. This work was also supported by GRRC program of Gyeonggi province [2009-B02, Development of biodevice using DNA tile structure].

Author information



Corresponding author

Correspondence to Kyusik S. Yun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Demonstrates the digital photographs of MIC of AgNPs (a) and GlcNAgNPs (b) against different gram-negative (1–8) and gram-positive bacterial strains (9–16) (PDF 917 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Veerapandian, M., Lim, S.K., Nam, H.M. et al. Glucosamine-functionalized silver glyconanoparticles: characterization and antibacterial activity. Anal Bioanal Chem 398, 867–876 (2010).

Download citation


  • Nanoparticle
  • Silver
  • Glucosamine
  • Glyconanoparticle
  • Antibacterial agent