Skip to main content
Log in

Selective extraction of sulfonamides from food by use of silica-coated molecularly imprinted polymer nanospheres

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We report the use of nanospheres prepared by coating silica with molecularly imprinted polymer (MIP) for sulfamethoxazole (SMO). The resulting SiO2–SMO–MIP nanoparticles have highly improved imprinting and adsorption capacity, and can be used for separation and determination of sulfonamides in eggs and milk. In the synthesis, monodispersed SiO2 nanoparticles (Si–NP) of diameter 80 nm were amino-modified by reaction with 3-aminopropyltriethoxylsilane. The acryloyl monolayer was then grafted onto the amine-modified Si–NP. Finally, the MIP films were coated on to the surface of Si–NP by the copolymerization of the vinyl end groups with functional monomer (acrylamide), cross-linking agent (ethylene glycol dimethacrylate), initiator (azo-bis-isobutyronitrile), and template molecule (sulfamethoxazole). The resulting SiO2–SMO–MIP–NP were characterized by transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared spectrometry. The adsorption properties were demonstrated by equilibrium rebinding experiments and Scatchard analysis. The results showed that the binding sites of the SiO2–SMO–MIP were highly accessible, and the maximum adsorption capacity of the SiO2–SMO–MIP for SMO was 20.21 mg g−1. The selectivity of the SiO2–SMO–MIP–NP obtained was elucidated by using SMO and structurally related sulfonamides. The results indicated that the SiO2–SMO–MIP had significant selectivity for SMO. The feasibility of removing SMO and sulfadiazine (SDZ) from food samples was proved by use of spiked milk and eggs. A method for the separation and determination of trace SMO and SDZ in milk and egg samples was developed, with recoveries ranging from 69.8% to 89.1%.

The nanosized and uniform silica-molecularly imprinted polymers (MIPs) for sulfamethoxazole (SMO) was described. The resulting SiO2/SMO-MIPs nanoparticles possess a highly improved imprinting effect and adsorption capacity, and can be applied in separation and determination of sulfonamides in the eggs and milk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang XL, Li K, Shi DS, Xiong N, Jin X (2007) J Agric Food Chem 55:2072–2078

    Article  CAS  Google Scholar 

  2. Korpimäki T, Hagren V, Brockmann EC, Tuomola M (2004) Anal Chem 76:3091–3098

    Article  Google Scholar 

  3. Furusawa N (2003) Anal Chim Acta 481:255–259

    Article  CAS  Google Scholar 

  4. Stoev G, Michailova A (2000) J Chromatogr A 871:37–42

    Article  CAS  Google Scholar 

  5. Preechaworapun A, Chuanuwatanakul S, Einaga Y, Grudpan K, Motomizu S, Chailapakul O (2006) Talanta 68:1726–1731

    Article  CAS  Google Scholar 

  6. Chiavarino B, Crestoni ME, Marzio AD, Fornarini S (1998) J Chromatogr B 706:269–277

    Article  CAS  Google Scholar 

  7. Reeves VB (1999) J Chromatogr B 723:127–137

    Article  CAS  Google Scholar 

  8. Bogialli S, Curini R, Corcia AD, Nazzari M, Samperi R (2003) Anal Chem 75:1798–1804

    Article  CAS  Google Scholar 

  9. Hows MEP, Perrett D, Kay J (1997) J Chromatogr A 768:97–104

    Article  CAS  Google Scholar 

  10. Shao B, Dong D, Wu YN, Hu JY, Meng J, Tu XM, Xu SK (2005) Anal Chim Acta 546:174–181

    Article  CAS  Google Scholar 

  11. Ramström O, Skudar K, Haines J, Patel P, Brüggemann O (2001) J Agric Food Chem 49:2105–2114

    Article  Google Scholar 

  12. Baggiani C, Anfossi L, Giovannoli C (2007) Anal Chim Acta 591:29–39

    Article  CAS  Google Scholar 

  13. Ye L, Haupt K (2004) Anal Bioanal Chem 378:1887–1897

    Article  CAS  Google Scholar 

  14. Turiel E, Martín-Esteban A (2004) Anal Bioanal Chem 378:1876–1886

    Article  CAS  Google Scholar 

  15. Tamayo FG, Turiel E, Martín-Esteban A (2007) J Chromatogr A 1152:32–40

    Article  CAS  Google Scholar 

  16. Wulff G (2002) Chem Rev 102:1–27

    Article  CAS  Google Scholar 

  17. Haupt K, Mosbach K (2000) Chem Rev 100:2495–2504

    Article  CAS  Google Scholar 

  18. Lanza F, Sellergren B (2001) Chromatographia 53:599–611

    Article  CAS  Google Scholar 

  19. Sun XL, He XW, Zhang YK, Chen LX (2009) Talanta 79:926–934

    Article  CAS  Google Scholar 

  20. Zheng N, Li YZ, Chang WB, Wang ZM, Li TJ (2002) Anal Chim Acta 452:277–283

    Article  CAS  Google Scholar 

  21. Zheng N, Li YZ, Wen MJ (2004) J Chromatogr A 1033:179–182

    Article  CAS  Google Scholar 

  22. Liu XJ, Ouyang CB, Zhao R, Shangguan DH, Chen Y, Liu GQ (2006) Anal Chim Acta 571:235–241

    Article  CAS  Google Scholar 

  23. Valtchev M, Palm BS, Schiller M, Steinfeld U (2009) J Hazard Mater 170:722–728

    Article  CAS  Google Scholar 

  24. Chen ZY, Zhao R, Shangguan DH, Liu GQ (2005) Biomed Chromatogr 19:533–538

    Article  CAS  Google Scholar 

  25. Davies MP, Biasi VD, Perrett D (2004) Anal Chim Acta 504:7–14

    Article  CAS  Google Scholar 

  26. de Prada Guzmán-Vázquez A, Martínez-Ruiz P, Reviejo AJ, Pingarrón JM (2005) Anal Chim Acta 539:125–132

    Article  Google Scholar 

  27. He JX, Wang S, Fang GZ, Zhu HP, Zhang Y (2008) J Agric Food Chem 56:2919–2925

    Article  CAS  Google Scholar 

  28. Su SF, Zhang M, Li BL, Zhang HY, Dong XC (2008) Talanta 76:1141–1146

    Article  CAS  Google Scholar 

  29. Guo LY, Jiang XM, Yang CL, Zhang HX (2008) Anal Bioanal Chem 391:2291–2298

    Article  CAS  Google Scholar 

  30. Yilmaz E, Haupt K, Mosbach K (2000) Angew Chem Int Ed 39:2115–2118

    Article  CAS  Google Scholar 

  31. Bossi A, Piletsky SA, Piletska EV, Righetti PG, Turner APF (2001) Anal Chem 73:5281–5286

    Article  CAS  Google Scholar 

  32. Li Y, Yang HH, You QH, Zhuang ZX, Wang XR (2006) Anal Chem 78:317–320

    Article  CAS  Google Scholar 

  33. Barahona F, Turiel E, Cormack PAG, Martí-Esteban A (2010) J Polym Sci A Polym Chem 48:1058–1066

    Article  CAS  Google Scholar 

  34. Lee HY, Kim BS (2009) Biosens Bioelectron 25:587–591

    Article  Google Scholar 

  35. Sulitzky C, Rückert B, Hall AJ, Lanza F, Unger K, Sellergren B (2002) Macromol 35:79–91

    Article  CAS  Google Scholar 

  36. Titirici MM, Sellergren B (2006) Chem Mater 18:1773–1779

    Article  CAS  Google Scholar 

  37. Sellergren B, Rückert B, Hall AJ (2002) Adv Mater 14:1204–1208

    Article  CAS  Google Scholar 

  38. Rückert B, Hall AJ, Sellergren B (2002) J Mater Chem 12:2275–2280

    Article  Google Scholar 

  39. Carter SR, Rimmer S (2004) Adv Funct Mater 14:553–561

    Article  CAS  Google Scholar 

  40. Silvestri D, Borrelli C, Giusti P, Cristallini C, Ciardelli G (2005) Anal Chim Acta 542:3–13

    Article  CAS  Google Scholar 

  41. Lu CH, Zhou WH, Han B, Yang HH, Chen X, Wang XR (2007) Anal Chem 79:5457–5461

    Article  CAS  Google Scholar 

  42. Gao DM, Zhang ZP, Wu MH, Xie CG, Guan GJ, Wang DP (2007) J Am Chem Soc 129:7859–7866

    Article  CAS  Google Scholar 

  43. Wang X, Wang LY, He XW, Zhang YK, Chen LX (2009) Talanta 78:327–332

    Article  CAS  Google Scholar 

  44. Li L, He XW, Chen LX, Zhang YK (2009) Chem Asian J 4:286–293

    Article  CAS  Google Scholar 

  45. Lu Q, Chen XM, Li N, Luo J, Jiang HJ, Chen LN, Hu Q, Du SH, Zhang ZP (2010) Talanta 81:959–966

    Article  CAS  Google Scholar 

  46. Stöber W, Fink A, Bohn EJ (1968) J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  47. Philipse AP, Vrij AJ (1989) J Colloid Interface Sci 128:121–136

    Article  CAS  Google Scholar 

  48. Lanza F, Hall AJ, Sellergren B, Bereczki A, Horvai G, Bayoudh S, Cormack PAG, Sherrington DC (2001) Anal Chim Acta 435:91–106

    Article  CAS  Google Scholar 

  49. Aerts MML, Beek WMJ (1998) J Chromatogr 435:97–112

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from 863 High Technology Project of China (2007AA10Z432, 2006AA10Z438), the National Basic Research Program of China (no. 2007CB914100), the National Natural Science Foundation of China (nos 20935001, 20875050), and the National Natural Science Foundation of Tianjin (no. 10JCZDJC17600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Langxing Chen or Yukui Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, R., Zhang, J., He, X. et al. Selective extraction of sulfonamides from food by use of silica-coated molecularly imprinted polymer nanospheres. Anal Bioanal Chem 398, 451–461 (2010). https://doi.org/10.1007/s00216-010-3909-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3909-z

Keywords

Navigation