Skip to main content
Log in

Dynamics of hyaluronan aqueous solutions as assessed by fast field cycling NMR relaxometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fast field cycling (FFC) NMR relaxometry has been used to study the conformational properties of aqueous solutions of hyaluronan (HYA) at three concentrations in the range 10 to 25 mg mL–1. Results revealed that, irrespective of the solution concentration, three different hydration layers surround hyaluronan. The inner layer consists of water molecules strongly retained in the proximity of the HYA surface. Because of their strong interactions with HYA, water molecules in this inner hydration layer are subject to very slow dynamics and have the largest correlation times. The other two hydration layers are made of water molecules which are located progressively further from the HYA surface. As a result, decreasing correlation times caused by faster molecular motion were measured. The NMRD profiles obtained by FFC-NMR relaxometry also showed peaks attributable to 1H–14N quadrupole interactions. Changes in intensity and position of the quadrupolar peaks in the NMRD profiles suggested that with increasing concentration the amido group is progressively involved in the formation of weak and transient intramolecular water bridging adjacent hyaluronan chains. In this work, FFC-NMR was used for the first time to obtain deeper insight into HYA–water interactions and proved itself a powerful and promising tool in hyaluronan chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Garg HG, Hales CA (2004) Chemistry and biology of hyaluronan. Elsevier Ltd, Oxford

    Google Scholar 

  2. De Angelis PL (2002) Glycobiology 12:9R–16R

    Article  Google Scholar 

  3. McDonald JA, Camenisch TD (2003) Glycoconjugate J 19:331–339

    Article  Google Scholar 

  4. Kogan G, Šoltéz L, Stern R, Gemener P (2007) Biotechnol Lett 29:17–25

    Article  CAS  Google Scholar 

  5. Rinaudo M (2008) Polym Int 57:397–430

    Article  CAS  Google Scholar 

  6. Leach JB, Schmidt CE (2004) In: Encyclopedia of Biomaterials and Biomedical Engineering, 1st edn. Marcel Dekker, pp 779–789

  7. Taglienti A, Sequi P, Valentini M (2009) Carbohydr Res 344:245–249

    Article  CAS  Google Scholar 

  8. Cowman MK, Matsuoka S (2005) Carbohydr Res 340:791–809

    Article  CAS  Google Scholar 

  9. Blundell CD, Reed MAC, Almond A (2006) Carbohydr Res 341:2803–2815

    Article  CAS  Google Scholar 

  10. Almond A (2007) Cell Mol Life Sci 64:1591–1596

    Article  CAS  Google Scholar 

  11. Giannotti MI, Rinaudo M, Vancso GJ (2007) Biomacromolecules 8:2648–2652

    Article  CAS  Google Scholar 

  12. Deschrevel B, Tranchepain F, Vincent J-C (2008) Matrix Biol 27:475–485

    Article  CAS  Google Scholar 

  13. Hargittai I, Hargittai M (2008) J Struct Chem 19:697–717

    Article  CAS  Google Scholar 

  14. Tømmeraas K, Melander C (2008) Biomacromolecules 9:1535–1540

    Article  Google Scholar 

  15. Matteini P, Dei L, Carretti E, Volpi N, Goti A, Pini R (2009) Biomacromolecules 10:1516–1522

    Article  CAS  Google Scholar 

  16. Blundell CD, Reed MAC, Almond A (2006) Carbohydr Res 341:2803–2815

    Article  CAS  Google Scholar 

  17. Giannotti MI, Rinaudo M, Vancso GJ (2007) Biomacromolecules 8:2648–2652

    Article  CAS  Google Scholar 

  18. Haxaire K, Maréchal Y, Milas M, Rinaudo M (2003) Biopolymers 72:10–20

    Article  CAS  Google Scholar 

  19. Haxaire K, Maréchal Y, Milas M, Rinaudo M (2003) Biopolymers 72:149–161

    Article  CAS  Google Scholar 

  20. Maréchal Y, Milas M, Rinaudo M (2003) Biopolymers 72:162–173

    Article  Google Scholar 

  21. Hatakeyama T, Hatakeyama H (1998) Thermochim Acta 308:3–22

    Article  CAS  Google Scholar 

  22. Lui J, Cowman MK (2000) J Therm Anal Calorim 59:547–557

    Article  Google Scholar 

  23. Pogány P, Kovács A (2009) Carbohydr Res 344:1745–1752

    Article  Google Scholar 

  24. Rinaudo M (2006) Macromol Symp 245–246:549–557

    Article  Google Scholar 

  25. Conte P, Bubici S, Palazzolo E, Alonzo G (2009) Spectrosc Lett 42:235–239

    Article  CAS  Google Scholar 

  26. Bertram HC, Wiking L, Nielsen JH, Andersen HJ (2005) Int Dairy J 15:1056–1063

    Article  CAS  Google Scholar 

  27. Davenel A, Schuck P, Mariette F, Brulé G (2002) Lait 82:465–473

    Article  CAS  Google Scholar 

  28. Gianferri R, Maioli M, Delfini M, Brusio E (2007) Int Dairy J 17:167–176

    Article  CAS  Google Scholar 

  29. Hernández-Sánchez N, Hills BP, Barreiro P, Marigheto N (2007) Postharvest Biol Technol 44:260–270

    Article  Google Scholar 

  30. Tang HR, Zhao BL, Belton PS, Sutcliffe LH, Ng A (2000) Magn Reson Chem 38:765–770

    Article  CAS  Google Scholar 

  31. Prestes RA, Colnago LA, Forato LA, Vizzotto L, Novotny EH, Carrilho E (2007) Anal Chim Acta 596:325–329

    Article  CAS  Google Scholar 

  32. Casieri C, Bubici S, Viola I, De Luca F (2004) Solid State Nucl Magn Reson 26:65–73

    Article  CAS  Google Scholar 

  33. Kausik R, Fatkullin N, Hüsing N, Kimmich R (2007) Magn Reson Imaging 25:489–497

    Article  CAS  Google Scholar 

  34. Melton JR, Kantzas A, Langford CH (2007) Anal Chim Acta 605:46–52

    CAS  Google Scholar 

  35. Halle B, Johannesson H, Venu K (1998) J Magn Reson 135:1–13

    Article  CAS  Google Scholar 

  36. Wang YL, Belton PS (2000) Chem Phys Lett 325:33–38

    Article  CAS  Google Scholar 

  37. Kimmich R, Anoardo E (2004) Prog Nucl Magn Reson Spectrosc 44:257–320

    Article  CAS  Google Scholar 

  38. Ferrante G, Sykora S (2005) Adv Inorg Chem 57:405–470

    Article  CAS  Google Scholar 

  39. Laghi L, Cremonini MA, Placucci G, Sykora S, Wright K, Hills B (2005) Magn Reson Imaging 23:01–510

    Article  Google Scholar 

  40. Dobies M, Kuśmia S, Jurga S (2005) Acta Phys Pol A 108:33–46

    CAS  Google Scholar 

  41. Takahashi M, Hatakeyama T, Hatakeyama H (2000) Carbohydr Polym 41:91–95

    Article  CAS  Google Scholar 

  42. Lauffer RB (1987) Chem Rev 87:901–927

    Article  CAS  Google Scholar 

  43. Bakhmutov VI (2005) Pratical NMR relaxation for chemists. John Wiley & Sons Ltd, Chichester

    Google Scholar 

  44. Bertini I, Luchinat C (1986) In: Gray ABP, Deries HB (eds) NMR of paramagnetic molecules in biological systems. The Benjamin/Cummings Publishing Company Inc, California

    Google Scholar 

  45. Fouissac E, Milas M, Rinaudo M (1993) Macromol 26:6945–6951

    Article  CAS  Google Scholar 

  46. Almond A, Sheehan JK, Brass A (1997) Glycobiology 7:597–604

    Article  CAS  Google Scholar 

  47. Almond A (2007) Cell Mol Life Sci 64:1591–1596

    Article  CAS  Google Scholar 

  48. Wolfe J, Bryant G, Koster KL (2002) CryLetters 23:157–166

    Google Scholar 

  49. Hardingham T (2004) In: Garg HG, Hales CA (eds) Chemistry and biology of hyaluronan. Elsevier Ltd, Oxford

    Google Scholar 

Download references

Acknowledgments

This work was partially funded by Ce.R.T.A. s.c.r.l. (Centri Regionali per le Tecnologie Alimentari; http://www.certa.it/default.asp) and by the Ministry of Education, Youth and Sport of the Czech Republic, project no. 0021630501. A.P. acknowledges an Erasmus project which enabled her to work at the Università degli Studi di Palermo. The authors kindly acknowledge Dr. Vladimír Velebný (CPN company, Dolní Dobrouč, Czech Republic) for providing the hyaluronan sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pellegrino Conte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Průšová, A., Conte, P., Kučerík, J. et al. Dynamics of hyaluronan aqueous solutions as assessed by fast field cycling NMR relaxometry. Anal Bioanal Chem 397, 3023–3028 (2010). https://doi.org/10.1007/s00216-010-3855-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3855-9

Keywords

Navigation