Analytical and Bioanalytical Chemistry

, Volume 397, Issue 7, pp 2739–2752 | Cite as

Raman-based geobarometry of ultrahigh-pressure metamorphic rocks: applications, problems, and perspectives

  • Andrey V. KorsakovEmail author
  • Vladimir P. Zhukov
  • Peter Vandenabeele
Original Paper


Raman-based geobarometry has recently become increasingly popular because it is an elegant way to obtain information on peak metamorphic conditions or the entire pressure-temperature-time (P-T-t) path of metamorphic rocks, especially those formed under ultrahigh-pressure (UHP) conditions. However, several problems need to be solved to get reliable estimates of metamorphic conditions. In this paper we present some examples of difficulties which can arise during the Raman spectroscopy study of solid inclusions from ultrahigh-pressure metamorphic rocks.


Raman spectroscopy Thermoelastic model Coesite Quartz Aragonite Calcite 



This study was supported by the Russian Foundation for Basic Research (10-05-00616-a, 10-05-00575-a), Russian Science Support Foundation. Financial support of the Belgian Science Policy—Interuniversity Attraction Poles Program P6/16—Belgian State is greatly acknowledged.


  1. 1.
    Chopin C (1984) Coesite and pure pyrope in high-grade blueschists of Western Alps: a first record and some consequences. Contrib Mineralog Petrol 86:107–118CrossRefGoogle Scholar
  2. 2.
    Smith DC (1984) Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature 310:641–644CrossRefGoogle Scholar
  3. 3.
    Sobolev NV, Shatsky VS (1990) Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature 343:742–746CrossRefGoogle Scholar
  4. 4.
    Boyer H, Smith DC, Chopin C, Lasnier B (1985) Raman microprobe (RMP) determinations of natural and synthetic coesite. Phys Chem Miner 12:45–48Google Scholar
  5. 5.
    Nasdala L, Hofmeister W, Harris JW, Glinnemann J (2005) Growth zoning and strain patterns inside diamond crystals as revealed by Raman maps. Am Mineralog 90:745–748CrossRefGoogle Scholar
  6. 6.
    Parkinson CD, Katayama I (1999) Present-day ultrahigh-pressure conditions of coesite inclusions in zircon and garnet: evidence from laser Raman microspectroscopy. Geology 27:979–982CrossRefGoogle Scholar
  7. 7.
    Sobolev NV, Fursenko BA, Goryainov SV, Shu JF, Hemley RJ, Mao HK, Boyd FR (2000) Fossilized high-pressure from the earths deep interior—the coesite-in-diamond barometer. Proc Natl Acad Sci U S A 97(22):11875–11879Google Scholar
  8. 8.
    Korsakov AV, Hutsebaut D, Theunissen K, Vandenabeele P, Stepanov AS (2007) Raman mapping of coesite inclusions in garnet from the Kokchetav Massif (Northern Kazakhstan). Spectrochim Acta A 68:1046–1052CrossRefGoogle Scholar
  9. 9.
    Korsakov AV, Theunissen K, Dobretsov NL (2010) Unusual garnet-coesite/quartz textures and the early exhumation of silica-rich UHP crustal rocks of Kulet (Kokchetav, Kazakhstan). J Metamorph Geol (in press)Google Scholar
  10. 10.
    Parkinson CD (2000) Coesite inclusions and prograde compositional zonation of garnet in whiteschist of the HP-UHPM Kokchetav massif, Kazakhstan: a record of progressive UHP metamorphism. Lithos 52:215–233CrossRefGoogle Scholar
  11. 11.
    Ye K, Liou JB, Cong B, Maruyama S (2001) Overpressures induced by coesite-quartz transition in zircon. Am Mineralog 86:1151–1155Google Scholar
  12. 12.
    Korsakov AV, De Gussem K, Zhukov VP, Perraki M, Vandenabeelee P, Golovin AV (2009) Aragonite-calcite-dolomite relationships in UHPM polycrystalline carbonate inclusions from the Kokchetav Massif, Northern Kazakhstan. Eur J Mineral 21:1301–1311CrossRefGoogle Scholar
  13. 13.
    Hutsebaut D, Vandenabeele P, Moens L (2005) Evaluation of an accurate calibration and spectral standardization procedure for Raman spectroscopy. Analyst 130:1204–1214CrossRefGoogle Scholar
  14. 14.
    Korsakov AV, Shatsky VS, Sobolev NV, Zayachkovsky AA (2002) Garnet-biotiteclinozoisite gneisses: a new type of diamondiferous metamorphic rocks of the Kokchetav massif. Eur J Mineralog 14:915–929CrossRefGoogle Scholar
  15. 15.
    Korsakov AV, Theunissen K, Kozmenko OA, Ovchinnikov YI (2006) Reaction textures in clinozoisite gneisses. Russ Geol Geophys 47:497–510Google Scholar
  16. 16.
    Korsakov AV, Perraki M, Zhukov VP, De Gussem K, Vandenabeelee P, Tomilenko AA (2009) Is quartz a potential indicator of ultrahigh-pressure metamorphism? Laser Raman spectroscopy of quartz inclusions in ultrahigh-pressure garnets. Eur J Mineral 21:1313–1323CrossRefGoogle Scholar
  17. 17.
    OBrien PJ, Ziemann MA (2008) Preservation of coesite in exhumed eclogite: insights from Raman mapping. Eur J Mineralog 20:827–834CrossRefGoogle Scholar
  18. 18.
    Hermann J (2003) Carbon recycled into deep Earth: evidence from dolomite dissociation in subduction-zone rocks: comment and Reply. Geology 31:e4–e5Google Scholar
  19. 19.
    Korsakov AV, Hermann J (2006) Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks. Earth Planet Sci Lett 241:104–118CrossRefGoogle Scholar
  20. 20.
    Dobretsov NL, Sobolev NV, Shatsky VS, Coleman RG, Ernst WG (1995) Geotectonic evolution of diamondiferous paragneisses of the Kokchetav complex, Northern Kazakhstan—the geologic enigma of ultrahigh-pressure crustal rocks within Phanerozoic foldbelt. Isl Arc 4:267–279CrossRefGoogle Scholar
  21. 21.
    Shatsky VS, Sobolev NV, Vavilov MA (1995) Diamond-bearing metamorphic rocks of the Kokchetav massif (Northern Kazakhstan). Cambridge University Press, Cambridge, pp 427–455Google Scholar
  22. 22.
    Theunissen K, Dobretsov NL, Korsakov A, Travin A, Shatsky VS, Smirnova L, Boven A (2000) Two contrasting petrotectonic domains in the Kokchetav megamelange (north Kazakhstan): difference in exhumation mechanisms of ultrahigh-pressure crustal rocks, or a result of subsequent deformation? Isl Arc 9:284–303CrossRefGoogle Scholar
  23. 23.
    Theunissen K, Dobretsov NL, Shatsky VS, Smirnova L, Korsakov A (2000) The diamond- bearing Kokchetav UHP massif in Northern Kazakhstan: exhumation structure. Terra Nova 12:181–187CrossRefGoogle Scholar
  24. 24.
    Korsakov AV, Shatsky VS, Sobolev NV (1998) The first finding of coesite in eclogites of the Kokchetav massif. Dokl Akad Nauk 360:77–81Google Scholar
  25. 25.
    Bischoff WD, Sharma SK, Mackenzie FT (1985) Carbonate ion disorder in synthetic and biogenic magnesian calcites: a Raman spectral study. Am Mineralog 70:581–589Google Scholar
  26. 26.
    Burke E (2001) Raman microspectrometry of fluid inclusions. Lithos 55:139–158CrossRefGoogle Scholar
  27. 27.
    Frost RL, Dickfos M (2007) Hydrated double carbonates a Raman and infrared spectroscopic study. Polyhedron 26:45034508Google Scholar
  28. 28.
    Gillet P, Biellmann C, Reynard B, McMillan P (1993) Raman spectroscopic studies of carbonates part I: high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite. Phys Chem Minerals 20:1–18Google Scholar
  29. 29.
    Liu LG, Mernagh TP (1990) Phase transitions and Raman spectra of calcite at high pressures and room temperature. Am Mineralog 75:801–806Google Scholar
  30. 30.
    Perraki M, Proyer A, Mposkos E, Kaindl R, Hoinkes G (2006) Raman micro-spectroscopy on diamond, graphite and other carbon polymorphs from the ultrahigh-pressure metamorphic Kimi Complex of the Rhodope Metamorphic Province, NE Greece. Earth Planet Sci Lett 241:672–685CrossRefGoogle Scholar
  31. 31.
    Scheetz BE, White WB (1977) Vibrational spectra of the alkaline earth double carbonates. Am Mineralog 62:36–50Google Scholar
  32. 32.
    Williams Q, Collerson B, Knittle E (1992) Vibrational spectra of magnesite (MgCO3) and calcite-Ill at high pressures. Am Mineralog 77:1158–1165Google Scholar
  33. 33.
    Edwards H, Villar S, Jehlicka J, Munshi T (2005) FTRaman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals. Spectrochimica Acta A 61:2273–2280CrossRefGoogle Scholar
  34. 34.
    Hemley RJ (1987) Pressure dependence of Raman spectra of SiO2 polymorphs: α-quartz, coesite, and stishovite. Terrapub, Tokyo-AGU, Washington, DC, pp 347–359Google Scholar
  35. 35.
    Sharma SK, Mammone JF, Nicol MF (1981) Raman investigation of ring configurations in vitrous silica. Nature 292:140–141CrossRefGoogle Scholar
  36. 36.
    Zhang Y (1998) Mechanical and phase equilibria in inclusion-host systems. Earth Planet Sci Lett 157:209–222CrossRefGoogle Scholar
  37. 37.
    Schmidt C, Ziemann MA (2000) In-situ Raman spectroscopy of quartz: a pressure sensor for hydrothermal diamond-anvil cell experiments at elevated temperatures. Am Mineralog 85:1725–1734Google Scholar
  38. 38.
    Zhukov VP, Korsakov AV (2010) Analysis of phase transformation in inclusions and obtaining of residual stress in multi-layered shells: thermomechanical model . Russ Geol Geophys (in press)Google Scholar
  39. 39.
    Holland T, Powell R (1990) An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O-Na2O-CaO-MgO-MnO-FeO- Fe2O3 -Al2O3 -TiO2 -SiO2 -C-H2-O2. J Metamorph Geol 8:89–124CrossRefGoogle Scholar
  40. 40.
    Guiraud M, Powell R (2006) PVT relationships and mineral equilibria in inclusions in minerals. Earth Planet Sci Lett 244:683–694CrossRefGoogle Scholar
  41. 41.
    Barron LM, Mernagh TP, Barron BJ (2008) Using strain birefringence in diamond to estimate the remnant pressure on an inclusion. Aust J Earth Sci 55:159–165CrossRefGoogle Scholar
  42. 42.
    Howell D, Nasdala L (2008) Discussion and reply using strain birefringence in diamond to estimate the remnant pressure on an inclusion. Aust J Earth Sci 55:11751180Google Scholar
  43. 43.
    Nasdala L, Brenker FE, Glinnemann J, Hofmeister W, Gasparik T, Harris JW, Stachel T, Reese I (2003) Spectroscopic 2D-tomography: residual pressure and strain around mineral inclusions in diamonds. Eur J Mineralog 15:931–935CrossRefGoogle Scholar
  44. 44.
    Kamenetsky VS, Kamenetsky MB, Sharygin VV, Golovin AV (2007) Carbonate-chloride enrichment in fresh kimberlites of the Udachnaya-East pipe, Siberia: a clue to physical properties of kimberlite magmas? Geophys Res Lett 304(9):9316–9321CrossRefGoogle Scholar
  45. 45.
    Kamenetsky VS, Kamenetsky MB, Sobolev AV, Golovin AV, Demouchy S, Faure K, Sharygin VV, Kuzmin DV (2008) Olivine in the Udachnaya-East kimberlite (Yakutia, Russia): types, compositions and origins. J Petrol 49(4):823–839CrossRefGoogle Scholar
  46. 46.
    Gillet P, Ingrin J, Chopin C (1984) Coesite in subducted continental crust: P-T history deduced from an elastic model. Earth Planet Sci Lett 70:426–436CrossRefGoogle Scholar
  47. 47.
    Van der Molen I, van Roermund HL (1986) The pressure path of solid inclusions in minerals the retention of coesite inclusions during uplift. Lithos 19:317–324CrossRefGoogle Scholar
  48. 48.
    Hermann J, Rubatto D, Korsakov A, Shatsky VS (2001) Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav massif, Kazakhstan). Contrib Mineralog Petrol 141:66–82Google Scholar
  49. 49.
    Rubatto D, Hermann J (2001) Exhumation as fast as subduction? Geology 29:3–6CrossRefGoogle Scholar
  50. 50.
    Stöckhert B, Trepmann CA, Massonne H (2009) Decrepitated UHP fluid inclusions: about diverse phase assemblages and extreme decompression rates (Erzgebirge, Germany). J Metamorph Geol 27:621–633CrossRefGoogle Scholar
  51. 51.
    Navon O (1991) Infrared determination of high internal pressures in diamond fluid inclusions. Nature 335:746–748CrossRefGoogle Scholar
  52. 52.
    Harker YD, She CY, Edwards DF (1970) Raman spectra of α-quartz under uniaxial stress. J Appl Physi 41(13):5274–5278CrossRefGoogle Scholar
  53. 53.
    Tekippe VJ, Ramdas AK, Rodriguez S (1973) Piezospectroscopic study of the Raman spectrum of α-quartz. Phys Rev B 8:706–716CrossRefGoogle Scholar
  54. 54.
    Xu J, Mao H, Hemley RJ (2002) The gem anvil cell: high-pressure behaviour of diamond and related materials. J Phys Condens Matter 14:11,549–11,552Google Scholar
  55. 55.
    Yamamoto J, Ando J, Kagi H, Inoue T, Yamada A, Yamazaki D, Irifune T (2008) In situ strength measurements on natural upper-mantle minerals. Phys Chem Miner 35:249–257CrossRefGoogle Scholar
  56. 56.
    Hermann J (2003) Experimental evidence for diamond-facies metamorphism in the Dora-Maira Massif. Lithos 70:163–182CrossRefGoogle Scholar
  57. 57.
    Yamamoto J, Kagi H (2008) Application of densimetry using micro-Raman spectroscopy for CO2 fluid inclusions: a probe for elastic strengths of mantle minerals. Eur J Mineralog 20:529–535CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Andrey V. Korsakov
    • 1
    Email author
  • Vladimir P. Zhukov
    • 2
  • Peter Vandenabeele
    • 3
  1. 1.Institute of Geology and Mineralogy of Siberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Computational Technologies of Siberian Branch of the Russian Academy of SciencesNovosibirskRussia
  3. 3.Department of ArchaeologyGhent UniversityGhentBelgium

Personalised recommendations