Advertisement

Analytical and Bioanalytical Chemistry

, Volume 398, Issue 1, pp 265–294 | Cite as

Ambient mass spectrometry: bringing MS into the “real world”

  • Rosana M. Alberici
  • Rosineide C. Simas
  • Gustavo B. Sanvido
  • Wanderson Romão
  • Priscila M. Lalli
  • Mario Benassi
  • Ildenize B. S. Cunha
  • Marcos N. Eberlin
Review

Abstract

Mass spectrometry has recently undergone a second contemporary revolution with the introduction of a new group of desorption/ionization (DI) techniques known collectively as ambient mass spectrometry. Performed in an open atmosphere directly on samples in their natural environments or matrices, or by using auxiliary surfaces, ambient mass spectrometry (MS) has greatly simplified and increased the speed of MS analysis. Since its debut in 2004 there has been explosive growth in the applications and variants of ambient MS, and a very comprehensive set of techniques based on different desorption and ionization mechanisms is now available. Most types of molecules with a large range of masses and polarities can be ionized with great ease and simplicity with the outstanding combination of the speed, selectivity, and sensitivity of MS detection. This review describes and compares the basis of ionization and the concepts of the most promising ambient MS techniques known to date and illustrates, via typical analytical and bioanalytical applications, how ambient MS is helping to bring MS analysis deeper than ever into the “real world” open atmosphere environment—to wherever MS is needed.

Figure

Schematic of EASI

Keywords

Mass spectrometry Ambient ionization Desorption Ion sources Direct analysis Ionization mechanisms 

Notes

Acknowledgements

The authors thank the Brazilian science foundations FAPESP, CNPq, CAPES, and FINEP for financial assistance.

References

  1. 1.
    Hoffmann E, Stroobant V (2007) Mass spectrometry: principles and applications, 3rd edn. Wiley, LondonGoogle Scholar
  2. 2.
    Oberacher H (2008) On the use of different mass spectrometric techniques for characterization of sequence variability in genomic DNA. Anal Bioanal Chem 391:135–149CrossRefGoogle Scholar
  3. 3.
    Kaltashov IA, Zhang M, Eyles SJ, Abzalimov RR (2006) Investigation of structure, dynamics and function of metalloproteins with electrospray ionization mass spectrometry. Anal Bioanal Chem 386:472–481CrossRefGoogle Scholar
  4. 4.
    Nielen MWF (1999) Maldi time-of-flight mass spectrometry of synthetic polymers. Mass Spectrom Rev 18:309–344CrossRefGoogle Scholar
  5. 5.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomalecules. Science 246:64–71CrossRefGoogle Scholar
  6. 6.
    Karas M, Bahr U, Gieβmann U (1991) Matrix-assisted laser desorption ionization mass spectrometry. Mass Spectrom Rev 10:335–357CrossRefGoogle Scholar
  7. 7.
    Cole RB (1997) Electrospray ionization mass spectrometry: fundamentals, instrumentation and applications. Wiley, New YorkGoogle Scholar
  8. 8.
    Santos LS (2010) Reactive intermediates: MS investigations in solution. WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  9. 9.
    Kinter M, Sherman NE (2000) Protein sequencing and identification using tandem mass spectrometry (Hardcover). Wiley, New YorkCrossRefGoogle Scholar
  10. 10.
    Bothner B, Siuzdak G (2004) Electrospray ionization of a whole virus: analyzing mass, structure, and viability. Chembiochem 5:258–260CrossRefGoogle Scholar
  11. 11.
    Wilkins CL, Lay JO (2006) Identification of microorganisms by mass spectrometry (Chemical Analysis: a series of monographs on analytical chemistry and its applications) (Hardcover). Wiley, New YorkGoogle Scholar
  12. 12.
    Takats Z, Wiseman JM, Cooks RG (2005) Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. J Mass Spectrom 40:1261–1275CrossRefGoogle Scholar
  13. 13.
    Cooks RG, Ouyang Z, Takáts Z, Wiseman JM (2006) Ambient mass spectrometry. Science 311:1566–1570CrossRefGoogle Scholar
  14. 14.
    Venter A, Neflieu M, Cooks RG (2008) Ambient desorption mass spectrometry. Trends Anal Chem 27:284–290CrossRefGoogle Scholar
  15. 15.
    Van Berkel GJ, Pasilis SP, Ovchinnikova O (2008) Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry. J Mass Spectrom 43:1161–1180CrossRefGoogle Scholar
  16. 16.
    Harris GA, Nyadong L, Fernandez FM (2008) Recent developments in ambient ionization techniques for analytical mass spectrometry. Analyst 133:1297–1301CrossRefGoogle Scholar
  17. 17.
    Manincke NE, Wiseman JM, Ifa DR, Cooks RG (2008) Desorption electrospray ionization (DESI) mass spectrometry and tandem mass spectrometry (MS/MS) of phospholipids and sphingolipids: ionization, adduct formation, and fragmentation. J Am Soc Mass Spectrom 19:531–543CrossRefGoogle Scholar
  18. 18.
    Chen H, Gamez G, Zenobi R (2009) What can we learn from ambient ionization techniques? J Am Soc Mass Spectrom 20:1947–1963CrossRefGoogle Scholar
  19. 19.
    Ifa DR, Jackson AU, Paglia G, Cooks RG (2009) Forensic applications of ambient ionization mass spectrometry. Anal Bioanal Chem 394:1995–2008CrossRefGoogle Scholar
  20. 20.
    Weston DJ (2010) Ambient ionization mass spectrometry: current understanding of mechanistic theory; analytical performance and applications areas. Analyst 135:661–668CrossRefGoogle Scholar
  21. 21.
    Ifa DR, Wu C, Ouyang Z, Cooks RG (2010) Desorption electrospray ionization and other ambient ionization methods: current progress and preview. Analyst 135:669–681CrossRefGoogle Scholar
  22. 22.
    Ouyang Z, Cooks RG (2009) Miniature mass spectrometers. Annu Rev Anal Chem 2:187–214CrossRefGoogle Scholar
  23. 23.
    Huang G, Xu W, Visbal-Onufrak MA, Ouyang Z, Cooks RG (2010) Direct analysis of melamine in complex matrices using a handheld mass spectrometer. Analyst 135:705–711CrossRefGoogle Scholar
  24. 24.
    Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–473CrossRefGoogle Scholar
  25. 25.
    Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Electrosonic spray ionization. A gentle technique for generating folded proteins and protein complexes in the gas phase and for studying ion-molecule reactions at atmospheric pressure. Anal Chem 76:4050–4058CrossRefGoogle Scholar
  26. 26.
    Wu C, Qian K, Nefliu M, Cook RG (2010) Ambient analysis of saturated hydrocarbons using discharge-induced oxidation in desorption electrospray ionization. J Am Soc Mass Spectrom 21:261–267CrossRefGoogle Scholar
  27. 27.
    Costa AB, Cooks RG (2008) Simulated splashes: elucidating the mechanism of desorption electrospray ionization mass spectrometry. Chem Phys Lett 464:1–8CrossRefGoogle Scholar
  28. 28.
    Chipuk JE, Brodbelt JS (2008) Transmission mode desorption electrospray ionization. J Am Soc Mass Spectrom 19:1612–1620CrossRefGoogle Scholar
  29. 29.
    Volny M, Venter A, Smith SA, Pazzi M, Cooks RG (2008) Surface effects and electrochemical cell capacitance in desorption electrospray ionization. Analyst 133:525–531CrossRefGoogle Scholar
  30. 30.
    Shin YS, Drolet B, Mayer R, Dolence K, Basile F (2007) Desorption electrospray ionization-mass spectrometry of proteins. Anal Chem 79:3514–3518CrossRefGoogle Scholar
  31. 31.
    Myung S, Wiseman JM, Valentine SJ, Takats Z, Cooks RG, Clemmer DE (2006) Coupling desorption electrospray ionization with ion mobility/mass spectrometry for analysis of protein structure: evidence for desorption of folded and denatured States. J Phys Chem B 110:5045–5051CrossRefGoogle Scholar
  32. 32.
    Hu QZ, Talaty N, Noll RJ, Cooks RG (2006) Desorption electrospray ionization using an Orbitrap mass spectrometer: exact mass measurements on drugs and peptides. Rapid Commun Mass Spectrom 20:3403–3408CrossRefGoogle Scholar
  33. 33.
    Weston DJ, Bateman R, Wilson ID, Wood TR, Creaser CS (2005) Direct analysis of pharmaceutical drug formulations using ion mobility spectrometry/quadrupole-time-of-flight mass spectrometry combined with desorption electrospray ionization. Anal Chem 77:7572–7580CrossRefGoogle Scholar
  34. 34.
    Kauppila TJ, Talaty N, Salo PK, Kotiaho T, Kostiainen R, Cooks RG (2006) New surfaces for desorption electrospray ionization mass spectrometry: porous silicon and ultra-thin layer chromatography plates. Rapid Commun Mass Spectrom 20:2143–2150CrossRefGoogle Scholar
  35. 35.
    Bereman MS, Nyadong L, Fernandez FM, Muddiman DC (2006) Direct high-resolution peptide and protein analysis by desorption electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 20:3409–3411CrossRefGoogle Scholar
  36. 36.
    Williams JP, Scrivens JH (2005) Rapid accurate mass desorption electrospray ionisation tandem mass spectrometry of pharmaceutical samples. Rapid Commun Mass Spectrom 19:3643–3650CrossRefGoogle Scholar
  37. 37.
    Takats Z, Cotte-Rodriguez I, Talaty N, Chen H, Cooks RG (2005) Direct trace level detection of explosives on ambient surfaces by desorption electrospray ionization mass spectrometry. Chem Commun 1950-1952Google Scholar
  38. 38.
    Ifa DR, Manicke NE, Rusine AL, Cooks RG (2008) Quantitative analysis of small molecules by desorption electrospray ionization mass spectrometry from polytetrafluoroethylene surfaces. Rapid Commun Mass Spectrom 22:503–510CrossRefGoogle Scholar
  39. 39.
    Ifa DR, Wiseman JM, Song Q, Cooks RG (2007) Development of capabilities for imaging mass spectrometry under ambient conditions with desorption electrospray ionization (DESI). Int J Mass Spectrom 259:8–15CrossRefGoogle Scholar
  40. 40.
    Eberlin LS, Ifa DR, Wu C, Cooks RG (2009) Three-dimensional visualization of mouse brain by lipid analysis using ambient ionization mass spectrometry. Angew Chem 49:873–876Google Scholar
  41. 41.
    Eberlin LS, Dill AL, Costa AB, Ifa DR, Cheng L, Masterson T, Koch M, Ratliff TL, Cooks, RG. (2010) Cholesterol sulfate imaging in human prostate cancer tissue by desorption electrospray ionization mass spectrometry. Anal Chem 82:3430–3434Google Scholar
  42. 42.
    Pasilis SP, Kertesz V, Van Berkel GJ (2008) Unexpected analyte oxidation during desorption electrospray ionization-mass spectrometry. Anal Chem 80:1208–1214CrossRefGoogle Scholar
  43. 43.
    Benassi M, Wu C, Nefliu M, Ifa DR, Volny M, Cooks RG (2009) Redox transformations in desorption electrospray ionization. Int J Mass Spectrom 280:235–240CrossRefGoogle Scholar
  44. 44.
    Wu C, Qian K, Nefliu M, Cooks RG (2010) Ambient analysis of saturated hydrocarbons using discharge-induced oxidation in desorption electrospray ionization. J Am Soc Mass Spectrom 21:261–267CrossRefGoogle Scholar
  45. 45.
    Chen H, Talaty NN, Takats Z, Cooks RG (2005) Desorption electrospray ionization mass spectrometry for high-throughput analysis of pharmaceutical samples in the ambient environment. Anal Chem 77:6915–6927CrossRefGoogle Scholar
  46. 46.
    Cotte-Rodriguez I, Takats Z, Talaty N, Chen H, Cooks RG (2005) Desorption electrospray ionization of explosives on surfaces: sensitivity and selectivity enhancement by reactive desorption electrospray ionization. Anal Chem 77:6755–6764CrossRefGoogle Scholar
  47. 47.
    Ifa DR, Manicke NE, Dill AL, Cooks RG (2008) Latent fingerprint chemical imaging by mass spectrometry. Science 321:805CrossRefGoogle Scholar
  48. 48.
    Reyzer ML, Caprioli RM (2005) MALDI mass spectrometry for direct tissue analysis: a new tool for biomarker discovery. J Proteome Res 4:1138–1142CrossRefGoogle Scholar
  49. 49.
    Caldwell RL, Caprioli RM (2005) Tissue profiling by mass spectrometry: a review of methodology and applications. Mol Cell Proteomics 4:395–401Google Scholar
  50. 50.
    Wu C, Ifa DR, Manicke NE, Cooks RG (2009) Rapid, direct analysis of cholesterol by charge labeling in reactive desorption electrospray ionization. Anal Chem 81:7618–7624CrossRefGoogle Scholar
  51. 51.
    Wu C, Siems WF, Hill HH (2000) Secondary electrospray ionization ion mobility spectrometry/mass spectrometry of illicit drugs. Anal Chem 72:396–403CrossRefGoogle Scholar
  52. 52.
    Chen YH, Hill HH, Wittmer DP (1994) Analytical merit of electrospray ion mobility spectrometry as a chromatographic detector. J Microcolumn Sep 6:515–524CrossRefGoogle Scholar
  53. 53.
    Martínez-Lozano P, Rus J, de la Mora GF, Hernández M, de la Mora JF (2009) Secondary electrospray ionization (SESI) of ambient vapors for explosive detection at concentrations below parts per trillion. J Am Soc Mass Spectrom 20:287–294CrossRefGoogle Scholar
  54. 54.
    Steiner WE, Clowers BH, Haigh PE, Hill HH (2003) Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry. Anal Chem 75:6068–6076CrossRefGoogle Scholar
  55. 55.
    Tam M, Hill HH (2004) Secondary electrospray ionization-ion mobility spectrometry for explosive vapor detection. Anal Chem 76:2741–2747CrossRefGoogle Scholar
  56. 56.
    Martinez-Lozano P, de la Mora JF (2009) On-line detection of human skin vapors. J Am Soc Mass Spectrom 20:1060–1063CrossRefGoogle Scholar
  57. 57.
    Dillon LA, Stone VN, Croasdell LA (2010) Optimization of secondary electrospray ionization (SESI) for the trace determination of gas-phase volatile organic compounds. Analyst 135:306–314CrossRefGoogle Scholar
  58. 58.
    Chen H, Venter A, Cooks RG (2006) Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chem Commun 19:2042–2044CrossRefGoogle Scholar
  59. 59.
    Chang DY, Lee CC, Shiea J (2002) Detecting large biomolecules from high-salt solutions by fused-droplet electrospray ionization mass spectrometry. Anal Chem 74:2465–2469CrossRefGoogle Scholar
  60. 60.
    Fan S, Chi-Yang L, Shiea J (2005) Eliminating the interferences from TRIS buffer and SDS in protein analysis by fused-droplet electrospray ionization mass spectrometry. J Proteome Res 4:606–612CrossRefGoogle Scholar
  61. 61.
    Pan CT, Shiea J, Shen SC (2007) Fabrication of an integrated piezo-electric micro-nebulizer for biochemical sample analysis. J Micromech Microeng 17:659–669CrossRefGoogle Scholar
  62. 62.
    Chen HW, Wortmann A, Zhang WH, Zenobi R (2007) Rapid in vivo fingerprint of non-volatile compounds in breath by extractive electrospray ionization quadrupole time-of-flight mass spectrometry. Angew Chem Int Ed 46:580–583CrossRefGoogle Scholar
  63. 63.
    Chen H, Sun Y, Wortmann A, Gu H, Zenobi R (2007) Differentiation of maturity and quality of fruit using noninvasive extractive electrospray ionization quadrupole time-of-flight mass spectrometry. Anal Chem 79:1447–1455CrossRefGoogle Scholar
  64. 64.
    Chen H, Hu B, Hu Y, Huan Y, Zhou Z, Qiao X (2009) Neutral desorption using a sealed enclosure to sample explosives on human skin for rapid detection by EESI-MS. J Am Chem Soc Mass Spectrom 20:719–722CrossRefGoogle Scholar
  65. 65.
    Chingi K, Chen H, Gamez G, Liang Z, Zenobe R (2009) Detection of diethyl phthalate in perfumes by extractive electrospray ionization mass spectrometry. Anal Chem 81:123–129CrossRefGoogle Scholar
  66. 66.
    Ding J, Haiwei G, Yang S, Li M, Li J, Chen H (2009) Selective detection of diethylene glycol in toothpaste products using neutral desorption reactive extractive electrospray ionization tandem mass spectrometry. Anal Chem 81:8632–8638CrossRefGoogle Scholar
  67. 67.
    Law WS, Chen H, Ding J, Yang S, Zhu Y, Gamez G, Chingin K, Ren Y, Zenobi R (2009) Rapid characterization of complex viscous liquids at the molecular. Angew Chem Int Ed 48:1–5CrossRefGoogle Scholar
  68. 68.
    Law WS, Chen HW, Balabin R, Berchtold C, Meier L, Zenobi R (2010) Rapid fingerprinting and classification of extra virgin olive oil by microjet sampling and extractive electrospray ionization mass spectrometry. Analyst 135:773–778CrossRefGoogle Scholar
  69. 69.
    Luque de Castro MD, Priego-Capote F (2007) Lesser known ultrasound-assisted heterogeneous sample-preparation procedures. TrAC 26:154–162Google Scholar
  70. 70.
    Chen HW, Wortmann A, Zenobi R (2007) Neutral desorption sampling coupled to extractive electrospray ionization mass spectrometry for rapid differentiation of biosamples by metabolomic fingerprinting. J Mass Spectrom 42:1123–1135CrossRefGoogle Scholar
  71. 71.
    Williams JP, Scrivens JH (2008) Coupling desorption electrospray ionization and neutral desorption/extractive electrospray ionization with a travelling-wave based ion mobility mass spectrometer for the analysis of drugs. Rapid Commun Mass Spectrom 22:187–196CrossRefGoogle Scholar
  72. 72.
    Chen H, Yang S, Wortmann A, Zenobi R (2007) Neutral desorption sampling of living objects for rapid analysis by extractive electrospray ionization mass spectrometry. Angew Chem Int Ed 46:7591–7594CrossRefGoogle Scholar
  73. 73.
    Gu H, Yang S, Li J, Hu B, Chen H, Zhang L, Fei Q (2010) Geometry-independent neutral desorption device for the sensitive EESI-MS detection of explosives on various surfaces. Analyst 135:779–788CrossRefGoogle Scholar
  74. 74.
    Wang H, Liu J, Cooks RG, Ouyang Z (2010) Paper spray for direct analysis of complex mixture using mass spectrometry. Angew Chem Int Ed 49:877–880Google Scholar
  75. 75.
    Liu J, Wang H, Manicke NE, Lin JM, Cooks RG, Ouyang Z (2010) Development, Characterization, and Application of Paper Spray Ionization. Anal Chem 82:2463–2471CrossRefGoogle Scholar
  76. 76.
    Huang MZ, Hsu HJ, Lee JY, Jeng J, Shiea J (2006) Direct protein detection from biological media through electrospray-assisted laser desorption ionization/mass spectrometry. J Proteome Res 5:1107–1116CrossRefGoogle Scholar
  77. 77.
    Sampson JS, Hawkridge AM, Muddiman DC (2006) Generation and detection of multiply-charged peptides and proteins by matrix assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 17:1712–1716CrossRefGoogle Scholar
  78. 78.
    Nemes P, Vertes A (2007) Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem 79:8098–8106CrossRefGoogle Scholar
  79. 79.
    Rezenom YH, Dong J, Murray KK (2008) Infrared laser-assisted desorption electrospray ionization mass spectrometry. Analyst 133:226–232CrossRefGoogle Scholar
  80. 80.
    Guo H, Liu A, Ye M, Yang M, Guo D (2007) Characterization of phenolic compounds in the fruits of Forsythia suspensa by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21:715–729CrossRefGoogle Scholar
  81. 81.
    Lin S-Y, Huang M-Z, Chang H-C, Shiea J (2007) Using electrospray-assisted laser desorption/ionization mass spectrometry to characterize organic compounds separated on thin-layer chromatography plates. Anal Chem 79:8789–8795CrossRefGoogle Scholar
  82. 82.
    Peng IX, Shiea J, Ogorzalek RR, Loo JA (2007) Electrospray-assisted laser desorption/ionization and tandem mass spectrometry of peptides and proteins. Rapid Commun Mass Spectrom 21:2541–2546CrossRefGoogle Scholar
  83. 83.
    Sampson JS, Hawkridge AM, Muddiman DC (2007) Direct characterization of intact polypeptides by matrix-assisted laser desorption electrospray ionization quadrupole Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 21:1150–1154CrossRefGoogle Scholar
  84. 84.
    Sampson JS, Hawkridge AM, Muddiman DC (2008) Development and characterization of an ionization technique for analysis of biological macromolecules: liquid matrix-assisted laser desorption electrospray ionization. Anal Chem 80:6773–6778CrossRefGoogle Scholar
  85. 85.
    Sampson JS, Murray KK, Muddiman DC (2009) Generation of multiply charged peptides and proteins by radio frequency acoustic desorption and ionization for mass spectrometric detection. J Am Soc Mass Spectrom 20:597–600CrossRefGoogle Scholar
  86. 86.
    McEwen CN, McKay RG, Larsen BS (2005) Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments. Anal Chem 77:7826–7831CrossRefGoogle Scholar
  87. 87.
    McEwen C, Gutteridge S (2007) Analysis of the inhibition of the ergosterol pathway in fungi using the atmospheric solids analysis probe (ASAP) method. J Am Soc Mass Spectrom 18:1274–1278CrossRefGoogle Scholar
  88. 88.
    Griffiths WJ, Jonsson AP, Liu S, Rai DK, Wang Y (2001) Electrospray and tandem mass spectrometry in biochemistry. Biochem J 355:545–561Google Scholar
  89. 89.
    Williams JP, Patel VJ, Holland R, Scrivens JH (2006) The use of recently described ionisation techniques for the rapid analysis of some common drugs and samples of biological origin. Rapid Commun Mass Spectrom 20:1447–1456CrossRefGoogle Scholar
  90. 90.
    Song Y, Cooks G (2006) Atmospheric pressure ion/molecule reactions for the selective detection of nitroaromatic explosives using acetonitrile and air as reagents. Rapid Commun Mass Spectrom 20:3130–3138CrossRefGoogle Scholar
  91. 91.
    Williams JP, Srivens JH (2005) Rapid accurate mass desorption electrospray ionisation tandem mass spectrometry of pharmaceutical samples. Rapid Commun Mass Spectrom 19:3643–3650CrossRefGoogle Scholar
  92. 92.
    Cody RB, Laramée JA, Durst HD (2005) Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem 77:2297–2303CrossRefGoogle Scholar
  93. 93.
    Laramée JA, Cody RB, Nilles JM, Durst HD (2007) Forensic analysis on the cutting edge. In: Blackleage RD (ed) Forensic Applications of DART (Direct Analysis in Real Time) Mass Spectrometry. Wiley, NJGoogle Scholar
  94. 94.
    Jones RW, Cody RB, McClelland JF (2006) Differentiating writing inks using direct analysis in real time mass spectrometry. J Forensic Sci 51:915–918CrossRefGoogle Scholar
  95. 95.
    Fernandez FM, Cody RB, Green MD, Hampton CY, McGready R, Sengaloundeth S, White NJ, Newton PN (2006) Characterization of solid counterfeit drug samples by desorption electrospray ionization and direct-analysis-in-real-time coupled to time-of-flight mass spectrometry. ChemMedChem 1:702–705CrossRefGoogle Scholar
  96. 96.
    Haefliger OP, Jeckelman N (2007) Direct mass spectrometric analysis of flavors and fragrances in real applications using DART. Rapid Commun Mass Spectrom 21:1361–1366CrossRefGoogle Scholar
  97. 97.
    Vail T, Jones PR, Sparkman OD (2007) Rapid and unambiguous identification of melamine in contaminated pet food based on mass spectrometry with four degrees of confirmation. J Anal Toxicol 31:304–312Google Scholar
  98. 98.
    Pierce CY, Barr JR, Cody RB, Massung RF, Woolfitt AR, Moura H, Thompson HA, Fernandez FM (2007) Ambient generation of fatty acid methyl ester ions from bacterial whole cells by direct analysis in real time (DART) mass spectrometry. Chem Commun 8:807–809CrossRefGoogle Scholar
  99. 99.
    Yew JY, Cody RB, Kravitz EA (2008) Cuticular hydrocarbon analysis of an awake behaving fly using direct analysis in real-time time-of-flight mass spectrometry. Proc Natl Acad Sci USA 105:7135–7140CrossRefGoogle Scholar
  100. 100.
    Yu S, Crawford E, Tice J, Musselman B, Wu JT (2009) Bioanalysis without sample cleanup or chromatography: the evaluation and initial implementation of direct analysis in real time ionization mass spectrometry for the quantification of drugs in biological matrixes. Anal Chem 81:193–202CrossRefGoogle Scholar
  101. 101.
    Morlock G, Ueda Y (2007) New coupling of planar chromatography with direct analysis in real time mass spectrometry. J Chromatogr A 1143:243–251CrossRefGoogle Scholar
  102. 102.
    Cody RB (2009) Observation of molecular ions and analysis of nonpolar compounds with the direct analysis in real time ion source. Anal Chem 81:1101–1107CrossRefGoogle Scholar
  103. 103.
    Song L, Dykstra AB, Yao H, Bartmess JE (2009) Ionization mechanism of negative ion-direct analysis in real time: a comparative study with negative ion-atmospheric pressure photoionization. J Am Soc Mass Spectrom 20:42–50CrossRefGoogle Scholar
  104. 104.
    Wells JM, Roth MJ, Keil AD, Grossenbacher JW, Justes DR, Patterson GE, Barket DJ Jr (2008) Implementation of DART and DESI ionization on a fieldable mass spectrometer. J Am Soc Mass Spectrom 19:1419–1424CrossRefGoogle Scholar
  105. 105.
    Shelley JT, Wiley JS, Chan GCY, Schilling GD, Ray SJ, Hieftje GM (2009) Characterization of direct-current atmospheric-pressure discharges useful for ambient desorption/ionization mass spectrometry. J Am Soc Mass Spectrom 20:837–844CrossRefGoogle Scholar
  106. 106.
    Nyandong L, Galhena AS, Fernandez FM (2009) Desorption electrospray/metastable-Induced Ionization: a flexible multimode ambient ion generation technique. Anal Chem 81:7788–7794CrossRefGoogle Scholar
  107. 107.
    Shin YS, Drolet B, Mayer R, Dolence K, Basile F (2007) Desorption electrospray ionization-mass spectrometry of proteins. Anal Chem 79:3514–3518CrossRefGoogle Scholar
  108. 108.
    Andrade FJ, Wetzel WC, Chan GCY, Webb MR, Gamez G, Ray SJ, Hieftje GM (2006) A new, versatile, direct-current helium atmospheric-pressure glow discharge. J Anal At Spectrom 21:1175–1184CrossRefGoogle Scholar
  109. 109.
    Andrade FJ, Shelley JT, Wetzel WC, Webb MR, Gamez G, Ray SJ, Hieftje GM (2008) Atmospheric pressure chemical ionization source. 2. Desorption-ionization for the direct analysis of solid compounds. Anal Chem 80:2654–2663CrossRefGoogle Scholar
  110. 110.
    Ratcliffe LV, Rutten FJM, Barrett DA, Whitmore T, Seymour D, Greenwood C, Aranda-Gonzalvo Y, Robinson S, McCoustra M (2007) Surface analysis under ambient conditions using plasma-assisted desorption/ionization mass spectrometry. Anal Chem 79:6094–6101CrossRefGoogle Scholar
  111. 111.
    Sonnenfeld A, Tun TM, Zajícková L, Kozlov KV, Wagner H-E, Behnke JF, Hippler R (2001) Deposition process based on organosilicon precursors in dielectric barrier discharges at atmospheric pressure-A comparison. Plasma Process Polym 6:237–266Google Scholar
  112. 112.
    Harper JD, Charipar NA, Mulligan CC, Zhang X, Cooks RG, Ouyang Z (2008) Low-temperature plasma probe for ambient desorption ionization. Anal Chem 80:9097–9104CrossRefGoogle Scholar
  113. 113.
    Na N, Zhao MX, Zhang SC, Yang CD, Zhang XR (2007) Development of a dielectric barrier discharge ion source for ambient mass spectrometry. J Am Soc Mass Spectrom 18:1859–1862CrossRefGoogle Scholar
  114. 114.
    Na N, Zhang C, Zhao MX, Zhang SC, Yang CD, Fang X, Zhang XR (2007) Direct detection of explosives on solid surfaces by mass spectrometry with an ambient ion source based on dielectric barrier discharge. J Am Soc Mass Spectrom 42:1079–1085Google Scholar
  115. 115.
    Wiley JS, Garcia-Reyes JF, Harper JD, Charipar NA, Ouyang Z, Cooks RG (2010) Screening of agrochemicals in foodstuffs using low-temperature plasma (LTP) ambient ionization mass spectrometry. Analyst. doi: 10.1039/b919493b Google Scholar
  116. 116.
    Jackson A, Garcia-Reyes JF, Harper JD, Wiley JH, Molina-Diaz A, Ouyang Z, Cooks RG (2010) Analysis of drugs of abuse in biofluids by low temperature plasma (LTP) ionization mass spectrometry. Analyst. doi: 10.1039/b920155f Google Scholar
  117. 117.
    Garcia-Reyes JF, Mazotti F, Harper JD, Charipar NA, Oradu S, Ouyang Z, Sindona G, Cooks RG (2009) Direct olive oil analysis by low-temperature plasma (LTP) ambient ionization mass spectrometry. Rapid Commun Mass Spectrom 23:3057–3062CrossRefGoogle Scholar
  118. 118.
    Ma X, Zhang S, Lin Z, Liu Y, Xing Z, Yang C, Zhang X (2009) Real time monitoring of chemical reactions by mass spectrometry utilizing a low temperature plasma probe. Analyst 134:1863–1867CrossRefGoogle Scholar
  119. 119.
    Benassi M, Garcia-Reyes JF, Cooks RG (2009) Ambient Ion/molecule reactions using a low temperature plasma probe. Extended Abstract presented at 18th International mass spectrometry conference, in Bremen, Germany, from August 30th to September 4thGoogle Scholar
  120. 120.
    Haapala M, Pol J, Saarela V, Arvola V, Kotiaho T, Ketola RA, Franssila S, Kauppila TJ, Kostiainen R (2007) Desorption atmospheric pressure photoionization. Anal Chem 79:7867–7872CrossRefGoogle Scholar
  121. 121.
    Kauppila TJ, Arvola V, Haapala M, Pol J, Aalberg L, Saarela V, Franssila S, Kotiaho T, Kostiainen R (2008) Direct analysis of illicit drugs by desorption atmospheric pressure photoionization. Rapid Commun Mass Spectrom 22:979–985CrossRefGoogle Scholar
  122. 122.
    Luosujärvi L, Arvola V, Haapala M, Pol J, Saarela V, Franssila S, Kotiaho T, Kostiainen R, Kauppila TJ (2008) Desorption and ionization mechanisms in desorption atmospheric pressure photoionization. Anal Chem 80:7460–7466CrossRefGoogle Scholar
  123. 123.
    Luosujarvi L, Laakkonen U-M, Kostiainen R, Kotiaho T, Kauppila TJ (2009) Analysis of street market confiscated drugs by desorption atmospheric pressure photoionization and desorption electrospray ionization coupled with mass spectrometry. Rapid Commun Mass Spectrom 23:1401–1404CrossRefGoogle Scholar
  124. 124.
    Hirabayashi A, Sakairi M, Koizumi H (1994) Sonic spray ionization method for atmospheric pressure ionization mass spectrometry. Anal Chem 66:4557–4559CrossRefGoogle Scholar
  125. 125.
    Hirabayashi A, Sakairi M, Koizumi H (1995) Sonic spray mass spectrometry. Anal Chem 67:2878–2882CrossRefGoogle Scholar
  126. 126.
    Hirabayashi A, Hirabayashi Y, Sakairi M, Koizumi H (1996) Multiply-charged ion formation by sonic spray. Rapid Commun Mass Spectrom 10:1703–1705CrossRefGoogle Scholar
  127. 127.
    Haddad R, Sparrapan R, Eberlin MN (2006) Desorption sonic spray ionization for (high) voltage-free ambient mass spectrometry. Rapid Commun Mass Spectrom 20:2901–2905CrossRefGoogle Scholar
  128. 128.
    Haddad R, Sparrapan R, Kotiaho T, Eberlin MN (2008) Easy ambient sonic-spray ionization-membrane interface mass spectrometry for direct analysis of solution constituents. Anal Chem 80:898–903CrossRefGoogle Scholar
  129. 129.
    Takats Z, Nanita SC, Cooks RG, Schlosser G, Karoly Vekey K (2003) Amino acid clusters formed by sonic spray ionization. Anal Chem 75:1514–1523CrossRefGoogle Scholar
  130. 130.
    Chen ML, Cook KD (2007) Oxidation artifacts in the electrospray mass spectrometry of a peptide. Anal Chem 79:2031–2036CrossRefGoogle Scholar
  131. 131.
    Boys BL, Kuprowski MC, Noel JJ, Konermann L (2009) Protein oxidative modifications during electrospray ionization: solution phase electrochemistry or corona discharge-induced radical attack? Anal Chem 81:4027–4034CrossRefGoogle Scholar
  132. 132.
    Sorensen MB, Aaslo P, Egsgaard H, Lund T (2008) Determination of D/L-amino acids by zero needle voltage electrospray ionisation rapid commun. Mass Spectrom 22:455–461Google Scholar
  133. 133.
    Haddad R, Milagres HMS, Catharino RR, Eberlin MN (2008) Easy ambient sonic-spray ionization mass spectrometry combined with thin-layer chromatography. Anal Chem 80:2744–2750CrossRefGoogle Scholar
  134. 134.
    Eberlin LS, Abdelnur PV, Passero A, de Sá GF, Daroda RJ, Souza V, Eberlin MN (2009) Analysis of biodiesel and biodiesel-petrodiesel blends by high performance thin layer chromatography combined with easy ambient sonic-spray ionization mass spectrometry. Analyst 134:1652–1657CrossRefGoogle Scholar
  135. 135.
    Alberici RM, Simas RC, de Sá GF, Daroda RJ, Souza V, Eberlin MN (2010) Analysis of fuels via easy ambient sonic-spray ionization mass spectrometry. Anal Chim Acta 659:15–22CrossRefGoogle Scholar
  136. 136.
    Haddad R, Catharino RR, Marques LA, Eberlin MN (2008) Perfume fingerprinting by easy ambient sonic-spray ionization mass spectrometry: nearly instantaneous typification and counterfeit detection. Rapid Commun Mass Spectrom 22:3662–3666CrossRefGoogle Scholar
  137. 137.
    Saraiva AS, Abdelnur PV, Catharino RR, Nunes G, Eberlin MN (2009) Fabric softeners: nearly instantaneous characterization and quality control of cationic surfactants by easy ambient sonic-spray ionization mass spectrometry. Rapid Commun Mass Spectrom 23:357–362CrossRefGoogle Scholar
  138. 138.
    Simas RC, Catharino RR, Cunha IBS, Cabral EC, Barrera-Arellano D, Eberlin MN, Alberici RM (2010) Characterization of vegetable oils via TAG and FFA profiles by easy ambient sonic-spray ionization mass spectrometry. Analyst 135:738–744CrossRefGoogle Scholar
  139. 139.
    Abdelnur PV, Eberlin LS, de Sá GF, Souza V, Eberlin MN (2008) Single-shot biodiesel analysis: nearly instantaneous typification and quality control solely by ambient mass spectrometry. Anal Chem 80:7882–7886CrossRefGoogle Scholar
  140. 140.
    Sawaya ACHF, Abdelnurb PV, Eberlin MN, Kumazawac S, Ahnd MR, Bangd KS, Nagarajae N, Bankovaf VS, Afrouzang H (2010) Fingerprinting of propolis by easy ambient sonic-spray ionization mass spectrometry. Talanta 81:100–108CrossRefGoogle Scholar
  141. 141.
    Lalli PM, Sanvido GB, Garcia JS, Haddad R, Cosso RG, Maia DRJ, Zacca JJ, Maldaner AO, Eberlin MN (2010) Fingerprinting and aging of ink by easy ambient sonic-spray ionization mass spectrometry. Analyst 135:745–750CrossRefGoogle Scholar
  142. 142.
    Corilo YE, Vaz BG, Simas RC, Nascimento HDL, Klitzke CK, Pereira RCL, Bastos WL, Rodgers RP, Eberlin MN (2010) Petroleomics by EASI(+/−) FT-ICR MS. Anal Chem 82:3990–3996CrossRefGoogle Scholar
  143. 143.
    Haddad R, Sarabia Neto RC, Cosso RG, Maia DRJ, Maldener AO, Zacca JJ, Sanvido GB, Romão W, Vaz BG, Eberlin LS, Ifa DR, Manicke NE, Dill A, Cooks RG, Eberlin MN (2010) Instantaneous Chemical Profiles of Banknotes by Ambient Mass Spectrometry. Anal Chem. AcceptedGoogle Scholar
  144. 144.
    Figueiredo EC, Sanvido GB, Zezzi MA, Eberlin MN (2010) Molecularly imprinted polymers as analyte sequesters and selective surfaces for easy ambient sonic-spray ionization. Analyst 135:726–730CrossRefGoogle Scholar
  145. 145.
    Santos VG, Regiani T, Dias FFG, Romão W, Klitzke CF, Coelho F, Eberlin MN (2010) Development and applications of Venturi easy ambient sonic-spray ionization (V-EASI): Easier than ever ambient mass spectrometry. Nature Chem. SubmittedGoogle Scholar
  146. 146.
    Amarante GW, Milagre HMS, Vaz BG, Ferreira BRV, Eberlin MN (2009) Dualistic nature of the mechanism of the Morita − Baylis − Hillman reaction probed by electrospray ionization mass spectrometry. J Org Chem 74:3031–3037CrossRefGoogle Scholar
  147. 147.
    Nyadong L, Late S, Green MD, Banga A, Fernandez FM (2008) Direct quantitation of active ingredients in solid artesunate antimalarials by noncovalent complex forming reactive desorption electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 19:380–388CrossRefGoogle Scholar
  148. 148.
    Perez JJ, Harris GA, Chipuk JE, Brodbelt JS, Green MD, Hampton CY, Fernandez FM (2010) Transmission-mode direct analysis in real time and desorption electrospray ionization mass spectrometry of insecticide-treated bednets for malaria control. Analyst 135:712–719CrossRefGoogle Scholar
  149. 149.
    Wiseman JM, Evans CA, Bowen CL, Kennedy JH (2010) Direct analysis of dried blood spots utilizing desorption electrospray ionization (DESI) mass spectrometry. Analyst 135:720–725CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Rosana M. Alberici
    • 1
  • Rosineide C. Simas
    • 1
  • Gustavo B. Sanvido
    • 1
  • Wanderson Romão
    • 1
  • Priscila M. Lalli
    • 1
  • Mario Benassi
    • 1
  • Ildenize B. S. Cunha
    • 1
  • Marcos N. Eberlin
    • 1
  1. 1.ThoMSon Mass Spectrometry LaboratoryInstitute of Chemistry, University of Campinas – UNICAMPCampinasBrazil

Personalised recommendations