Skip to main content

Advertisement

Log in

Digital biosensors with built-in logic for biomedical applications—biosensors based on a biocomputing concept

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This article reviews biomolecular logic systems for bioanalytical applications, specifically concentrating on the prospects and fundamental and practical challenges of designing digitally operating biosensors logically processing multiple biochemical signals. Such digitally processed information produces a final output in the form of a yes/no response through Boolean logic networks composed of biomolecular systems, and hence leads to a high-fidelity biosensing compared with traditional single (or parallel) sensing devices. It also allows direct coupling of the signal processing with chemical actuators to produce integrated “smart” “sense/act” (biosensor-bioactuator) systems. Unlike common biosensing devices based on a single input (analyte), devices based on biochemical logic systems require a fundamentally new approach for the sensor design and operation and careful attention to the interface of biocomputing systems and electronic transducers. As common in conventional biosensors, the success of the enzyme logic biosensor would depend, in part, on the immobilization of the biocomputing reagent layer. Such surface confinement provides a contact between the biocomputing layer and the transducing surface and combines efficiently the individual logic-gate elements. Particular attention should thus be given to the composition, preparation, and immobilization of the biocomputing surface layer, to the role of the system scalability, and to the efficient transduction of the output signals. By processing complex patterns of multiple physiological markers, such multisignal digital biosensors should have a profound impact upon the rapid diagnosis and treatment of diseases, and particularly upon the timely detection and alert of medical emergencies (along with immediate therapeutic intervention). Other fields ranging from biotechnology to homeland security would benefit from these advances in new biocomputing biosensors and the corresponding closed-loop “add/act” operation.

Biochemical computing and logic-gate systems based on biomolecules have the potential to revolutionize the field of biosensors. This article reviews the prospects, fundamental and practical challenges of designing digitally operating biosensors logically processing multiple biochemical signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. De Silva AP, Uchiyama S, Vance TP, Wannalerse B (2007) Coord Chem Rev 251:1623–1632

    Article  Google Scholar 

  2. De Silva AP, Uchiyama S (2007) Nat Nanotechnol 2:399–410

    Article  Google Scholar 

  3. Szacilowski K (2008) Chem Rev 108:3481–3548

    Article  CAS  Google Scholar 

  4. Credi A (2007) Angew Chem Int Ed 46:5472–5475

    Article  CAS  Google Scholar 

  5. Calude CS, Costa JF, Dershowitz N, Freire E, Rozenberg G (eds) (2009) Unconventional computation. Lecture notes in computer science, vol 5715. Springer, Berlin

  6. De Silva AP, Gunaratne HQN, McCoy CP (1993) Nature 364:42–44

    Article  Google Scholar 

  7. De Silva AP, Gunaratne HQN, McCoy CP (1997) J Am Chem Soc 119:7891–7892

    Article  Google Scholar 

  8. De Silva AP, Gunaratne HQN, Maguire GEM (1994) J Chem Soc Chem Commun 1213–1214

  9. Credi A, Balzani V, Langford SJ, Stoddart JF (1997) J Am Chem Soc 119:2679–2681

    Article  CAS  Google Scholar 

  10. De Silva AP, McClenaghan ND (2002) Chem Eur J 8:4935–4945

    Article  Google Scholar 

  11. De Silva AP, Dixon IM, Gunaratne HQN, Gunnlaugsson T, Maxwell PRS, Rice TE (1999) J Am Chem Soc 121:1393–1394

    Article  Google Scholar 

  12. Straight SD, Liddell PA, Terazono Y, Moore TA, Moore AL, Gust D (2007) Adv Funct Mater 17:777–785

    Article  CAS  Google Scholar 

  13. Turfan B, Akkaya EU (2002) Org Lett 4:2857–2859

    Article  CAS  Google Scholar 

  14. Wang ZX, Zheng GR, Lu P (2005) Org Lett 7:3669–3672

    Article  CAS  Google Scholar 

  15. Baytekin HT, Akkaya EU (2000) Org Lett 2:1725–1727

    Article  CAS  Google Scholar 

  16. Zong G, Xiana L, Lua G (2007) Tetrahedron Lett 48:3891–3894

    Article  CAS  Google Scholar 

  17. Gunnlaugsson T, MacDónaill DA, Parker D (2001) J Am Chem Soc 123:12866–12876

    Article  CAS  Google Scholar 

  18. Gunnlaugsson T, MacDónaill DA, Parker D (2000) Chem Commun 93–94

  19. De Sousa M, De Castro B, Abad S, Miranda MA, Pischel U (2006) Chem Commun 2051–2053

  20. Li L, Yu M-X, Li FY, Yi T, Huang CH (2007) Colloids Surf A 304:49–53

    Article  CAS  Google Scholar 

  21. Luxami V, Kumar S (2008) New J Chem 32:2074–2079

    Article  Google Scholar 

  22. Qian JH, Qian XH, Xu YF, Zhang SY (2008) Chem Commun 4141–4143

  23. Wagner N, Ashkenasy G (2009) Chem Eur J 15:1765–1775

    Article  CAS  Google Scholar 

  24. Pischel U (2007) Angew Chem Int Ed 46:4026–4040

    Article  CAS  Google Scholar 

  25. Brown GJ, De Silva AP, Pagliari S (2002) Chem Commun 2461–2463

  26. Qu D-H, Wang Q-C, Tian H (2005) Angew Chem Int Ed 44:5296–5299

    Article  CAS  Google Scholar 

  27. Andréasson J, Straight SD, Kodis G, Park C-D, Hambourger M, Gervaldo M, Albinsson B, Moore TA, Moore AL, Gust D (2006) J Am Chem Soc 128:16259–16265

    Article  Google Scholar 

  28. Andréasson J, Kodis G, Terazono Y, Liddell PA, Bandyopadhyay S, Mitchell RH, Moore TA, Moore AL, Gust D (2004) J Am Chem Soc 126:15926–15927

    Article  Google Scholar 

  29. Lopez MV, Vazquez ME, Gomez-Reino C, Pedrido R, Bermejo MR (2008) New J Chem 32:1473–1477

    Article  Google Scholar 

  30. Margulies D, Melman G, Shanzer A (2006) J Am Chem Soc 128:4865–4871

    Article  CAS  Google Scholar 

  31. Kuznetz O, Salman H, Shakkour N, Eichen Y, Speiser S (2008) Chem Phys Lett 451:63–67

    Article  CAS  Google Scholar 

  32. Katz E, Privman V (2010) Chem Soc Rev 39:1835–1857

    Google Scholar 

  33. Sivan S, Tuchman S, Lotan N (2003) Biosystems 70:21–33

    Article  CAS  Google Scholar 

  34. Unger R, Moult J (2006) Proteins 63:53–64

    Article  CAS  Google Scholar 

  35. Stojanovic MN, Stefanovic D, LaBean T, Yan H (2005) In: Willner I, Katz E (eds) Bioelectronics: from theory to applications. Wiley-VCH, Weinheim, pp 427–455

    Google Scholar 

  36. Win MN, Smolke CD (2008) Science 322:456–460

    Article  CAS  Google Scholar 

  37. Simpson ML, Sayler GS, Fleming JT, Applegate B (2001) Trends Biotechnol 19:317–323

    Article  CAS  Google Scholar 

  38. Baron R, Lioubashevski O, Katz E, Niazov T, Willner I (2006) J Phys Chem A 110:8548–8553

    Article  CAS  Google Scholar 

  39. Strack G, Pita M, Ornatska M, Katz E (2008) Chembiochem 9:1260–1266

    Article  CAS  Google Scholar 

  40. Privman V, Pedrosa V, Melnikov D, Pita M, Simonian A, Katz E (2009) Biosens Bioelectron 25:695–701

    Article  CAS  Google Scholar 

  41. Zhou J, Arugula MA, Halámek J, Pita M, Katz E (2009) J Phys Chem B 113:16065–16070

    Article  CAS  Google Scholar 

  42. Baron R, Lioubashevski O, Katz E, Niazov T, Willner I (2006) Angew Chem Int Ed 45:1572–1576

    Article  CAS  Google Scholar 

  43. Niazov T, Baron R, Katz E, Lioubashevski O, Willner I (2006) Proc Natl Acad Sci USA 103:17160–17163

    Article  CAS  Google Scholar 

  44. Privman V, Arugula MA, Halámek J, Pita M, Katz E (2009) J Phys Chem B 113:5301–5310

    Article  CAS  Google Scholar 

  45. Tam TK, Pita M, Katz E (2009) Sens Actuators B 140:1–4

    Article  Google Scholar 

  46. Tokarev I, Gopishetty V, Zhou J, Pita M, Motornov M, Katz E, Minko S (2009) ACS Appl Mater Interfaces 1:532–536

    Article  CAS  Google Scholar 

  47. Motornov M, Zhou J, Pita M, Tokarev I, Gopishetty V, Katz E, Minko S (2009) Small 5:817–820

    Article  CAS  Google Scholar 

  48. Pita M, Minko S, Katz E (2009) J Mater Sci Mater Med 20:457–462

    Article  CAS  Google Scholar 

  49. Pita M, Krämer M, Zhou J, Poghossian A, Schöning MJ, Fernández VM, Katz E (2008) ACS Nano 2:2160–2166

    Article  CAS  Google Scholar 

  50. Motornov M, Zhou J, Pita M, Gopishetty V, Tokarev I, Katz E, Minko S (2008) Nano Lett 8:2993–2997

    Article  CAS  Google Scholar 

  51. Krämer M, Pita M, Zhou J, Ornatska M, Poghossian A, Schöning MJ, Katz E (2009) J Phys Chem C 113:2573–2579

    Article  Google Scholar 

  52. Zhou J, Tam TK, Pita M, Ornatska M, Minko S, Katz E (2009) ACS Appl Mater Interfaces 1:144–149

    Article  CAS  Google Scholar 

  53. Privman M, Tam TK, Pita M, Katz E (2009) J Am Chem Soc 131:1314–1321

    Article  CAS  Google Scholar 

  54. Wang X, Zhou J, Tam TK, Katz E, Pita M (2009) Bioelectrochemistry 77:69–73

    Article  CAS  Google Scholar 

  55. Katz E, Pita M (2009) Chem Eur J 15:12554–12564

    Article  CAS  Google Scholar 

  56. Amir L, Tam TK, Pita M, Meijler MM, Alfonta L, Katz E (2009) J Am Chem Soc 131:826–832

    Article  CAS  Google Scholar 

  57. Tam TK, Pita M, Ornatska M, Katz E (2009) Bioelectrochemistry 76:4–9

    Article  CAS  Google Scholar 

  58. Margulies D, Hamilton AD (2009) J Am Chem Soc 131:9142–9143

    Article  CAS  Google Scholar 

  59. Szacilowski K (2007) Biosystems 90:738–749

    Article  CAS  Google Scholar 

  60. Ezziane Z (2006) Nanotechnology 17:R27–R39

    Article  CAS  Google Scholar 

  61. Adar R, Benenson Y, Linshiz G, Rosner A, Tishby N, Shapiro E (2004) Proc Natl Acad Sci USA 101:9960–9965

    Article  CAS  Google Scholar 

  62. Simmel FC (2007) Nanomedicine 2:817–830

    Article  CAS  Google Scholar 

  63. May EE, Dolan PL, Crozier PS, Brozik S, Manginell M (2008) IEEE Sens J 8:1011–1019

    Article  CAS  Google Scholar 

  64. von Maltzahn G, Harris TJ, Park J-H, Min D-H, Schmidt AJ, Sailor MJ, Bhatia SN (2007) J Am Chem Soc 129:6064–6065

    Article  Google Scholar 

  65. Pita M, Strack G, MacVittie K, Zhou J, Katz E (2009) J Phys Chem B 113:16071–16076

    Article  CAS  Google Scholar 

  66. Tomizaki K, Mihara H (2007) J Am Chem Soc 129:8345–8352

    Article  CAS  Google Scholar 

  67. Konry T, Walt DR (2009) J Am Chem Soc 131:13232–13233

    Article  CAS  Google Scholar 

  68. LaVan DA, McGuire T, Langer R (2003) Nat Biotechnol 21:1184–1191

    Article  CAS  Google Scholar 

  69. Wang J (2008) Talanta 75:636–641

    Article  CAS  Google Scholar 

  70. Heller A (2005) AIChE J 51:1054–1061

    Article  CAS  Google Scholar 

  71. Wang J (2008) Chem Rev 108:814–825

    Article  CAS  Google Scholar 

  72. Melnikov D, Strack G, Pita M, Privman V, Katz E (2009) J Phys Chem B 113:10472–10479

    Article  CAS  Google Scholar 

  73. Privman V, Strack G, Solenov D, Pita M, Katz E (2008) J Phys Chem B 112:11777–11784

    Article  CAS  Google Scholar 

  74. Strack G, Ornatska M, Pita M, Katz E (2008) J Am Chem Soc 130:4234–4235

    Article  CAS  Google Scholar 

  75. Pita M, Zhou J, Manesh KM, Halámek J, Katz E, Wang J (2009) Sens Actuators B 139:631–636

    Article  Google Scholar 

  76. Manesh KM, Halámek J, Pita M, Zhou J, Tam TK, Santhosh P, Chuang M-C, Windmiller JR, Abidin D, Katz E, Wang J (2009) Biosens Bioelectron 24:3569–3574

    Article  CAS  Google Scholar 

  77. Kline JA, Maiorano PC, Schroeder JD, Grattan RM, Vary TC, Watts JA (1997) J Mol Cell Cardiol 29:2465–2474

    Article  CAS  Google Scholar 

  78. Zink BJ, Schultz CH, Wang X, Mertz M, Stern SA, Betz AL (1999) Brain Res 837:1–7

    Article  CAS  Google Scholar 

  79. Prasad MR, Ramaiah C, McIntosh TK, Dempsey RJ, Hipkeos S, Yurek D (1994) J Neurochem 63:1086–1094

    Article  CAS  Google Scholar 

  80. Rosenberg JC, Lillehei RC, Longerbean J, Zini-Nierinann B (1961) Ann Surg 154:611–627

    Article  CAS  Google Scholar 

  81. Katz E, Privman E, Wang J (2010) In: Proceedings of the fourth international conference on quantum, nano and micro technologies (ICQNM 2010), February 10–16, 2010, St. Maarten, Netherlands Antilles, pp 1–9

  82. Wang J (2005) Small 1:1063–1068

    Article  Google Scholar 

  83. Scheller FW, Bauer CG, Makower A, Wollenberger U, Warsinke A, Bier FF (2001) Anal Lett 34:1233–1245

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation (grants DMR-0706209, CCF-0726698), by ONR (grant N00014-08-1-1202), and by the Semiconductor Research Corporation (award 2008-RJ-1839G).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joseph Wang or Evgeny Katz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Katz, E. Digital biosensors with built-in logic for biomedical applications—biosensors based on a biocomputing concept. Anal Bioanal Chem 398, 1591–1603 (2010). https://doi.org/10.1007/s00216-010-3746-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3746-0

Keywords