Abstract
This article reviews biomolecular logic systems for bioanalytical applications, specifically concentrating on the prospects and fundamental and practical challenges of designing digitally operating biosensors logically processing multiple biochemical signals. Such digitally processed information produces a final output in the form of a yes/no response through Boolean logic networks composed of biomolecular systems, and hence leads to a high-fidelity biosensing compared with traditional single (or parallel) sensing devices. It also allows direct coupling of the signal processing with chemical actuators to produce integrated “smart” “sense/act” (biosensor-bioactuator) systems. Unlike common biosensing devices based on a single input (analyte), devices based on biochemical logic systems require a fundamentally new approach for the sensor design and operation and careful attention to the interface of biocomputing systems and electronic transducers. As common in conventional biosensors, the success of the enzyme logic biosensor would depend, in part, on the immobilization of the biocomputing reagent layer. Such surface confinement provides a contact between the biocomputing layer and the transducing surface and combines efficiently the individual logic-gate elements. Particular attention should thus be given to the composition, preparation, and immobilization of the biocomputing surface layer, to the role of the system scalability, and to the efficient transduction of the output signals. By processing complex patterns of multiple physiological markers, such multisignal digital biosensors should have a profound impact upon the rapid diagnosis and treatment of diseases, and particularly upon the timely detection and alert of medical emergencies (along with immediate therapeutic intervention). Other fields ranging from biotechnology to homeland security would benefit from these advances in new biocomputing biosensors and the corresponding closed-loop “add/act” operation.

Biochemical computing and logic-gate systems based on biomolecules have the potential to revolutionize the field of biosensors. This article reviews the prospects, fundamental and practical challenges of designing digitally operating biosensors logically processing multiple biochemical signals.










Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
De Silva AP, Uchiyama S, Vance TP, Wannalerse B (2007) Coord Chem Rev 251:1623–1632
De Silva AP, Uchiyama S (2007) Nat Nanotechnol 2:399–410
Szacilowski K (2008) Chem Rev 108:3481–3548
Credi A (2007) Angew Chem Int Ed 46:5472–5475
Calude CS, Costa JF, Dershowitz N, Freire E, Rozenberg G (eds) (2009) Unconventional computation. Lecture notes in computer science, vol 5715. Springer, Berlin
De Silva AP, Gunaratne HQN, McCoy CP (1993) Nature 364:42–44
De Silva AP, Gunaratne HQN, McCoy CP (1997) J Am Chem Soc 119:7891–7892
De Silva AP, Gunaratne HQN, Maguire GEM (1994) J Chem Soc Chem Commun 1213–1214
Credi A, Balzani V, Langford SJ, Stoddart JF (1997) J Am Chem Soc 119:2679–2681
De Silva AP, McClenaghan ND (2002) Chem Eur J 8:4935–4945
De Silva AP, Dixon IM, Gunaratne HQN, Gunnlaugsson T, Maxwell PRS, Rice TE (1999) J Am Chem Soc 121:1393–1394
Straight SD, Liddell PA, Terazono Y, Moore TA, Moore AL, Gust D (2007) Adv Funct Mater 17:777–785
Turfan B, Akkaya EU (2002) Org Lett 4:2857–2859
Wang ZX, Zheng GR, Lu P (2005) Org Lett 7:3669–3672
Baytekin HT, Akkaya EU (2000) Org Lett 2:1725–1727
Zong G, Xiana L, Lua G (2007) Tetrahedron Lett 48:3891–3894
Gunnlaugsson T, MacDónaill DA, Parker D (2001) J Am Chem Soc 123:12866–12876
Gunnlaugsson T, MacDónaill DA, Parker D (2000) Chem Commun 93–94
De Sousa M, De Castro B, Abad S, Miranda MA, Pischel U (2006) Chem Commun 2051–2053
Li L, Yu M-X, Li FY, Yi T, Huang CH (2007) Colloids Surf A 304:49–53
Luxami V, Kumar S (2008) New J Chem 32:2074–2079
Qian JH, Qian XH, Xu YF, Zhang SY (2008) Chem Commun 4141–4143
Wagner N, Ashkenasy G (2009) Chem Eur J 15:1765–1775
Pischel U (2007) Angew Chem Int Ed 46:4026–4040
Brown GJ, De Silva AP, Pagliari S (2002) Chem Commun 2461–2463
Qu D-H, Wang Q-C, Tian H (2005) Angew Chem Int Ed 44:5296–5299
Andréasson J, Straight SD, Kodis G, Park C-D, Hambourger M, Gervaldo M, Albinsson B, Moore TA, Moore AL, Gust D (2006) J Am Chem Soc 128:16259–16265
Andréasson J, Kodis G, Terazono Y, Liddell PA, Bandyopadhyay S, Mitchell RH, Moore TA, Moore AL, Gust D (2004) J Am Chem Soc 126:15926–15927
Lopez MV, Vazquez ME, Gomez-Reino C, Pedrido R, Bermejo MR (2008) New J Chem 32:1473–1477
Margulies D, Melman G, Shanzer A (2006) J Am Chem Soc 128:4865–4871
Kuznetz O, Salman H, Shakkour N, Eichen Y, Speiser S (2008) Chem Phys Lett 451:63–67
Katz E, Privman V (2010) Chem Soc Rev 39:1835–1857
Sivan S, Tuchman S, Lotan N (2003) Biosystems 70:21–33
Unger R, Moult J (2006) Proteins 63:53–64
Stojanovic MN, Stefanovic D, LaBean T, Yan H (2005) In: Willner I, Katz E (eds) Bioelectronics: from theory to applications. Wiley-VCH, Weinheim, pp 427–455
Win MN, Smolke CD (2008) Science 322:456–460
Simpson ML, Sayler GS, Fleming JT, Applegate B (2001) Trends Biotechnol 19:317–323
Baron R, Lioubashevski O, Katz E, Niazov T, Willner I (2006) J Phys Chem A 110:8548–8553
Strack G, Pita M, Ornatska M, Katz E (2008) Chembiochem 9:1260–1266
Privman V, Pedrosa V, Melnikov D, Pita M, Simonian A, Katz E (2009) Biosens Bioelectron 25:695–701
Zhou J, Arugula MA, Halámek J, Pita M, Katz E (2009) J Phys Chem B 113:16065–16070
Baron R, Lioubashevski O, Katz E, Niazov T, Willner I (2006) Angew Chem Int Ed 45:1572–1576
Niazov T, Baron R, Katz E, Lioubashevski O, Willner I (2006) Proc Natl Acad Sci USA 103:17160–17163
Privman V, Arugula MA, Halámek J, Pita M, Katz E (2009) J Phys Chem B 113:5301–5310
Tam TK, Pita M, Katz E (2009) Sens Actuators B 140:1–4
Tokarev I, Gopishetty V, Zhou J, Pita M, Motornov M, Katz E, Minko S (2009) ACS Appl Mater Interfaces 1:532–536
Motornov M, Zhou J, Pita M, Tokarev I, Gopishetty V, Katz E, Minko S (2009) Small 5:817–820
Pita M, Minko S, Katz E (2009) J Mater Sci Mater Med 20:457–462
Pita M, Krämer M, Zhou J, Poghossian A, Schöning MJ, Fernández VM, Katz E (2008) ACS Nano 2:2160–2166
Motornov M, Zhou J, Pita M, Gopishetty V, Tokarev I, Katz E, Minko S (2008) Nano Lett 8:2993–2997
Krämer M, Pita M, Zhou J, Ornatska M, Poghossian A, Schöning MJ, Katz E (2009) J Phys Chem C 113:2573–2579
Zhou J, Tam TK, Pita M, Ornatska M, Minko S, Katz E (2009) ACS Appl Mater Interfaces 1:144–149
Privman M, Tam TK, Pita M, Katz E (2009) J Am Chem Soc 131:1314–1321
Wang X, Zhou J, Tam TK, Katz E, Pita M (2009) Bioelectrochemistry 77:69–73
Katz E, Pita M (2009) Chem Eur J 15:12554–12564
Amir L, Tam TK, Pita M, Meijler MM, Alfonta L, Katz E (2009) J Am Chem Soc 131:826–832
Tam TK, Pita M, Ornatska M, Katz E (2009) Bioelectrochemistry 76:4–9
Margulies D, Hamilton AD (2009) J Am Chem Soc 131:9142–9143
Szacilowski K (2007) Biosystems 90:738–749
Ezziane Z (2006) Nanotechnology 17:R27–R39
Adar R, Benenson Y, Linshiz G, Rosner A, Tishby N, Shapiro E (2004) Proc Natl Acad Sci USA 101:9960–9965
Simmel FC (2007) Nanomedicine 2:817–830
May EE, Dolan PL, Crozier PS, Brozik S, Manginell M (2008) IEEE Sens J 8:1011–1019
von Maltzahn G, Harris TJ, Park J-H, Min D-H, Schmidt AJ, Sailor MJ, Bhatia SN (2007) J Am Chem Soc 129:6064–6065
Pita M, Strack G, MacVittie K, Zhou J, Katz E (2009) J Phys Chem B 113:16071–16076
Tomizaki K, Mihara H (2007) J Am Chem Soc 129:8345–8352
Konry T, Walt DR (2009) J Am Chem Soc 131:13232–13233
LaVan DA, McGuire T, Langer R (2003) Nat Biotechnol 21:1184–1191
Wang J (2008) Talanta 75:636–641
Heller A (2005) AIChE J 51:1054–1061
Wang J (2008) Chem Rev 108:814–825
Melnikov D, Strack G, Pita M, Privman V, Katz E (2009) J Phys Chem B 113:10472–10479
Privman V, Strack G, Solenov D, Pita M, Katz E (2008) J Phys Chem B 112:11777–11784
Strack G, Ornatska M, Pita M, Katz E (2008) J Am Chem Soc 130:4234–4235
Pita M, Zhou J, Manesh KM, Halámek J, Katz E, Wang J (2009) Sens Actuators B 139:631–636
Manesh KM, Halámek J, Pita M, Zhou J, Tam TK, Santhosh P, Chuang M-C, Windmiller JR, Abidin D, Katz E, Wang J (2009) Biosens Bioelectron 24:3569–3574
Kline JA, Maiorano PC, Schroeder JD, Grattan RM, Vary TC, Watts JA (1997) J Mol Cell Cardiol 29:2465–2474
Zink BJ, Schultz CH, Wang X, Mertz M, Stern SA, Betz AL (1999) Brain Res 837:1–7
Prasad MR, Ramaiah C, McIntosh TK, Dempsey RJ, Hipkeos S, Yurek D (1994) J Neurochem 63:1086–1094
Rosenberg JC, Lillehei RC, Longerbean J, Zini-Nierinann B (1961) Ann Surg 154:611–627
Katz E, Privman E, Wang J (2010) In: Proceedings of the fourth international conference on quantum, nano and micro technologies (ICQNM 2010), February 10–16, 2010, St. Maarten, Netherlands Antilles, pp 1–9
Wang J (2005) Small 1:1063–1068
Scheller FW, Bauer CG, Makower A, Wollenberger U, Warsinke A, Bier FF (2001) Anal Lett 34:1233–1245
Acknowledgements
This research was supported by the National Science Foundation (grants DMR-0706209, CCF-0726698), by ONR (grant N00014-08-1-1202), and by the Semiconductor Research Corporation (award 2008-RJ-1839G).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Wang, J., Katz, E. Digital biosensors with built-in logic for biomedical applications—biosensors based on a biocomputing concept. Anal Bioanal Chem 398, 1591–1603 (2010). https://doi.org/10.1007/s00216-010-3746-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00216-010-3746-0
